Abstract:
The present disclosure relates to a method for increasing lipid content in microorganisms. The method comprises decreasing the expression of molecules involved in the protein synthesis to decrease protein synthesis and thereby increase lipid synthesis in the microorganisms. The present disclosure also provides a modified microorganism having increased lipid content.
Abstract:
Methods and systems for obtaining inhibitors of human DNA methyltransferase 1 (DNMT1) are disclosed where the methods involve designing compounds that resemble the DNMT1 transition state.
Abstract:
A method for treating cancer in a subject in need thereof includes administering to cancer cells of the subject an agent effective to modulate the level of DNMT1-associated RNA and/or the interaction of DNMT1-associated RNA and DNMT1 in the cancer cells of the subject. Embodiments described herein relate to RNAs (e.g., IncRNAs) associated with DNA methyltransferase 1 (DNMTI-associated RNA) in human cancer cells, methods and compositions of modulating the levels of DNMTI-associated RNA and/or the interaction of DNMT1-associated RNA and DNMT1 in cancer cells of the subject to treat cancer cells or a subject in need thereof, and/or methods of measuring the expression profile of DNMT1 associated RNA to determine whether the subject has cancer or an increased risk of cancer and/or the efficacy of a therapeutic regimen agent.
Abstract:
A method for designing and selecting a protein having a stabilized structure compared to a corresponding wild type protein, and proteins having at least six amino acid substitutions with respect to a corresponding wild type protein, designed for improved thermal stability, improved specific activity and/or improved expression levels, are provided herein.
Abstract:
The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.
Abstract:
The present disclosure relates to a method for increasing lipid content in microorganisms. The method comprises decreasing the expression of molecules involved in the protein synthesis to decrease protein synthesis and thereby increase lipid synthesis in the microorganisms. The present disclosure also provides a modified microorganism having increased lipid content.
Abstract:
Modified oligonucleotides comprising CpG sites, wherein the cytosine is replaced by cytosine analogs are provided as well as methods of making the oligonucleotides and their use in inhibiting DNA Methyltransferase, inhibiting or reversing methylation of genes and in treating cancer, tumorigenesis and hyper-proliferative disorders.
Abstract:
The present invention relates to chimeric RNA oligonucleotides that are single-stranded oligonucleotides. These compounds are capable of targeting particular genes and reducing DNA methyltransferase activity. Accordingly, these compounds are particularly useful in the treatment of disease associated with aberrant DNA methyltransferase activity, such as cancer or a genetic disorder.