Abstract:
A support for electrical conductors, optical fibers, gas tubes, etc., having an elongated base, portions at each end of the base extending towards the front of the support, each end portion containing an aperture oriented perpendicular to the length of that base and lying parallel to the base. The support has a plurality of U-shaped recesses with openings facing the front to form a fluted link. A plurality of the fluted links can be arranged into a flexible carrier belt by inserting wires through the apertures to hold the fluted links adjacent to each other with adjacent ones facing in opposite directions. During assembly of the carrier belt, the conductors, fibers or tubes, etc., to be supported are fitted into appropriate U-shaped recesses that provide support for those items. The flexible carrier belt provides conductor connections between a stationary part and a rotatable part of an apparatus.
Abstract:
An apparatus and a method for connecting underwater conduits by remotely operated devices including a vehicle capable of underwater excursions, and an apparatus and a method for connecting conduits.
Abstract:
A method and apparatus for connecting underwater conduits and more specifically, to a method and apparatus which is capable of performing the diverless connection of underwater flowlines and connection of these flowlines to underwater structures such as flowline bases, xmas trees, and templates. The connection of underwater conduits is facilitated by the use of a remotely operated vehicle and connection apparatus both being launchable and recoverable by a support vessel. The connection apparatus adapted to mount on at least one of the underwater conduits and the connection apparatus allowing for docking of the remotely controlled vehicle which then captures and draws a second conduit to form a continuous flowline. Then a connection apparatus is clamped upon the conduits. The apparatus then bolts the conduits together.
Abstract:
Systems and methods for securing a remotely operated vehicle (ROV) to a subsea structure during cleaning, maintenance, or inspection of the structure surface are provided. In one or more embodiments, an attachment mechanism includes a pair of grasping hooks that are raised and lowered when driven by a motorized drive. In one or more embodiments, an attachment mechanism includes a rigid holder having a mechanical stop and connected to a swing arm, the swing arm configured to rotate inward, but not outward beyond the mechanical stop. In one or more embodiments, an attachment mechanism includes a plurality of linked segments in series, each connected at a plurality of pivot points. A pair of wires passes through the plurality of linked segments and connects to a pair of pulleys that extend or retract the wires, thereby rotating the plurality of linked segments.
Abstract:
An activation frame for use by a remotely operated vehicle (ROV) to activate a subsea pipeline compression activated repair connector having no independent means of activation. The activation frame includes hydraulics and a control for the ROV to actuate the hydraulics. During installation, the hydraulics on the frame activate the pipe repair connector and form a seal between the connector and the pipe. The hydraulics, along with the frame, are separated from the connector after activation and returned to the surface.
Abstract:
Apparatus and methods are described for subsea pipeline servicing, including line-pack testing, physical integrity testing, recovery of damaged sections of pipelines, and product removal from subsea structures. In one embodiment of the invention, a subsea pipeline service skid is provided including at least one sample collection bladder affixed to the skid and in fluid communication with a skid mounted pump dimensioned to pull a sample from the subsea pipeline. In another embodiment, a product removal bladder is provided for removal of the hydrocarbons from a subsea structure.
Abstract:
A water environment robotic system (10) and method has a buoyancy configuration which can be selectively altered. The system includes an underwater robotic vehicle (110) and a buoyancy module (116) that is configured to be selectively buoyantly engaged and buoyantly disengaged with the underwater robotic vehicle. A tether (118) is connected to the buoyancy module and a motor (120) is operatively connected to the tether and is configured to extend and retract the tether and buoyancy module. The tether can be extended and retracted to extend and retract the buoyancy module. Extending and retracting the buoyancy module can buoyantly engage or buoyantly disengage the buoyancy module with the underwater robotic vehicle according to the arrangement of the system. By engaging and disengaging the buoyancy module, the buoyancy of the underwater robot can be selectively altered.
Abstract:
A pipeline repair connector (40), for a sub sea pipeline repair system, arranged for connecting and disconnecting pipelines on the ocean floor. The invention also related to a system including a connector (40), and to a method for replacement of broken pipelines on the ocean floor.