Abstract:
A vessel of a heat storage and release apparatus, the vessel comprises a shell comprising a metallic material, the shell having an elongated shape with a first end region and a second end region remote from the first end region, and an internal surface defining a cavity configured to contain a heat storage and release device and to guide gas-flow; a first opening through the shell for a flow of gas at high temperature and high pressure, the first opening being located in the first end region; a second opening through the shell for a flow of gas at low temperature and high pressure, the second opening being located in the second end region; and a lining of thermally insulating material adjacent to the internal surface and only partially covering the internal surface, the lining being located at least in the first end region.
Abstract:
A fuel cell powered vehicle is disclosed having a fuel tank, wherein the fuel tank is disposed on an undercarriage of the vehicle and has a substantially conical shape to militate against interference with a function of a suspension system of the vehicle.
Abstract:
The development of polymer composite liquid oxygen (LOX) tanks is a critical step in creating the next generation of launch vehicles. A composite LOX tank will weigh significantly less than conventional metal tanks. This benefit of reduced weight is critical to enable future launch vehicles to meet required mass fractions. The high strength and low weight of a composite tank allows for a lighter weight craft and/or higher payload capacity which results in lower costs per pound to place an object in orbit. The unique, nontraditional idea described here is to use resin-based composite materials to make such a composite tank or other oxygen carrying component such as a feedline. Polymer composites have traditionally been regarded as being more flammable than metals and therefore deemed not oxygen compatible. However, several halogenated composites have been tested for their ability to withstand ignition in the presence of oxygen, and have shown to be resistant to ignition. A halogenated composite material is a fiber reinforced composite that contains an element or elements from column 7A in the Periodic Table of Elements.
Abstract:
A device for storing compressed gas having a plurality of storage containers which each have a container wall which surrounds a cavity provided for storing the compressed air. The storage containers are connected to one another, and have at least one connection for introducing and/or discharging the compressed gas. In order to configure the storage containers so that they are as stable as possible, each of the storage containers has a covering layer which is arranged on the container wall at least in partial regions of the particular storage container. In order furthermore to enable the geometrical structure of the device to be adapted individually to the available spaces and to the quantity of gas to be stored, provision is made for each storage container to have a head piece which is connected to the container wall, and for the storage containers to be connected or able to be connected to one another in a modular manner via the respective head pieces. The compressed gas is conducted out of the storage containers via a flow duct which is provided in the head pieces and communicates with the cavity of the respective storage containers via a hole. The individual head pieces are connected via connecting elements which are introduced into corresponding openings in the head pieces.
Abstract:
The present disclosure provides a pressure vessel 10 (sometimes known as a composite overwrapped pressure vessel or “COPV”) comprising carbon fiber 20 (such as carbon fiber 20 filaments) wrapped around a tank liner 30.
Abstract:
Embodiments of the present invention relate to compressed gas storage units, which in certain applications may be employed in conjunction with energy storage systems. Some embodiments may comprise one or more blow-molded polymer shells, formed for example from polyethylene terephthalate (PET) or ultra-high molecular weight polyethylene (UHMWPE). Embodiments of compressed gas storage units may be composite in nature, for example comprising carbon fiber filament(s) wound with a resin over a liner. A compressed gas storage unit may further include a heat exchanger element comprising a heat pipe or apparatus configured to introduce liquid directly into the storage unit for heat exchange with the compressed gas present therein.
Abstract:
Embodiments of the present invention relate to compressed gas storage units, which in certain applications may be employed in conjunction with energy storage systems. Some embodiments may comprise one or more blow-molded polymer shells, formed for example from polyethylene terephthalate (PET) or ultra-high molecular weight polyethylene (UHMWPE). Embodiments of compressed gas storage units may be composite in nature, for example comprising carbon fiber filament(s) wound with a resin over a liner. A compressed gas storage unit may further include a heat exchanger element comprising a heat pipe or apparatus configured to introduce liquid directly into the storage unit for heat exchange with the compressed gas present therein.
Abstract:
The vessel of a heat storage and release apparatus is provided with a shell made of metallic material with an internal cavity for containing a heat storage and release device and for guiding gas-flow, a first opening through the shell for a flow of gas at high temperature and high pressure in and out of the cavity, a second opening through the shell for a flow of gas at low temperature and high pressure in and out of the cavity, and a lining of thermally insulating material covering only partially the internal surface of the cavity; the lining is located at least in the region where the first opening is located, i.e., where the temperature is higher; in this way, the temperature of the shell can be controlled. Such heat storage and release apparatus can be provided in an energy production plant as a component of an energy storage and release system to be used for compensating differences between energy produced and energy demanded.