Abstract:
Ein Druckluftenergiespeichersystem gemäß der Ausgestaltungen der vorliegenden Erfindung umfasst einen reversiblen Mechanismus, um Luft zu komprimieren und zu expandieren, einen oder mehrere Druckluftspeichertanks, ein Steuerungssystem, einen oder mehrere Wärmetauscher, und in bestimmten Ausgestaltungen der Erfindung, einen Motor-Generator. Der reversible Luft-Kompressor-Expander benutzt mechanische Leistung, um Luft zu komprimieren (wenn er als ein Kompressor arbeitet) und wandelt die Energie, die in der Druckluft gespeichert ist, zur mechanischen Energie um (wenn es als ein Expander arbeitet). In bestimmten Ausgestaltungen, der Kompressor-Expander umfasst eine oder mehrere Stufen, wobei jede Stufe, bestehend aus einem Druckbehälter (die ”Druckzelle”) ist teilweise mit Wasser oder anderen Flüssigkeiten gefüllt. In einigen Ausgestaltungen, der Druckbehälter kommuniziert mit einer oder mehreren Zylinder-Einrichtungen, um Luft und Flüssigkeit mit den Zylinderkammer (Kammern) auszutauschen. Geeignete Ventile (Ventiltimings) lassen Luft in und aus der Druckzelle und Zylinder-Einrichtung eintreten und austreten, falls vorhanden, unter einer elektronischen Steuerung.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when acting as a compressor) and converts the energy stored in compressed air to mechanical power (when acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the pressure cell) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
An energy storage system utilizing compressed gas as a storage medium, may include one or more turbines configured to convert energy in gas expansion and compression processes. One or more axial and centrifugal turbines may be used to store energy by compressing gas, and to recover energy from expanding gas. A plurality of orifices/nozzles may introduce a liquid into the gas as a heat exchange medium. Orifices/nozzles may be disposed on various surfaces of a turbine and/or in a separate mixing chamber flowing to a turbine. Structures of the turbine may be designed to mitigate damage caused by liquid injection, for example the turbine blades may be flexible and/or comprise impact-resistant materials.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the "pressure cell") partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
An energy storage and recovery system employs air compressed utilizing power from an operating wind turbine. This compressed air is stored within one or more chambers of a structure supporting the wind turbine above the ground. By functioning as both a physical support and as a vessel for storing compressed air, the relative contribution of the support structure to the overall cost of the energy storage and recovery system may be reduced, thereby improving economic realization for the combined turbine/support apparatus. In certain embodiments, expansion forces of the compressed air stored within the chamber, may be relied upon to augment the physical stability of a support structure, further reducing material costs of the support structure.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the "pressure cell") partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when acting as a compressor) and converts the energy stored in compressed air to mechanical power (when acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the pressure cell) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the "pressure cell") partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
Embodiments relate to techniques for forming underground caverns, and also to desalinization processes that may be employed in conjunction therewith. Particular embodiments form a salt cavern by introducing heated water into a salt formation, followed by removal of the resulting brine to leave a salt cavern. The injected water is provided as a result of a desalinization process of the brine. Concentrated brine resulting from the desalinization process, is used to form a solar pond whose stored thermal energy provides the heat source for the injected water. The resulting underground cavern may be employed to house large volumes of materials such as pressurized natural gas, liquid hydrocarbons, or compressed gas for energy storage. Also disclosed is a particular desalinization process based upon a Regenerative Evaporative Distiller (RED) structure, which efficiently leverages low grade heat available from the solar pond by relying primarily upon a latent heat of evaporation and condensation.