Abstract:
An optical module includes: a light emitting element; an optical member having a first lens surface that focuses light emitted from the light emitting element, a reflection surface that reflects a part of the light and passes another part of the light focused by the first lens surface, and a refracting surface that refracts the light reflected by the reflection surface; and a photodetector element that receives the light passed through the refracting surface, wherein the first lens surface and the refracting surface are defined by a coaxial surface of revolution, the first lens surface has a protruded section at a center section thereof, and the refracting surface is formed in a region that surrounds the first lens surface in a plan view.
Abstract:
Avoiding an illumination light irregularity to the utmost under increasing degree of integration and the memory capacity by suppressing a light amount irregularity on the illumination pupil plane to the utmost, unable to be adjusted by a conventional method. When the light amount irregularity on the illumination pupil plane which is the exit surface of the optical fiber is relatively large, focus of the imaging surface of the CCD camera is switched from the sample to the illumination pupil plane by a focus switching lens. The light amount irregularity is calculated and analyzed by the image processor. Based on the analyzed result, the exit surface position of the optical fiber is adjusted in the illumination optical system. In this manner, the illumination pupil plane which is the exit surface of the optical fiber can be adjusted to an illumination pupil plane where the light amount irregularity is small.
Abstract:
A photoelectric conversion device includes a circuit board, a first light emitting module, a first light receiving module, a second light emitting module, a second light receiving module, and an optical coupling member. The light emitting modules and the light receiving modules are mounted on the circuit board. The optical coupling member includes a first reflective surface obliquely connected to the light incident surface, four converging lenses, a second reflective surface, and a third reflective surface. The converging lenses are formed on the light incident surface. The first reflective surface defines a recess for receiving the second and third reflective surfaces. The third converging lens is fed by the second reflective surface and the fourth converging lens is fed by the third reflective surface.
Abstract:
A photoelectric conversion device includes a circuit board, a first light emitting module, a first light receiving module, a second light emitting module, a second light receiving module, and an optical coupling member. The light emitting modules and the light receiving modules are mounted on the circuit board. The optical coupling member includes a first reflective surface obliquely connected to the light incident surface, four converging lenses, a second reflective surface, and a third reflective surface. The converging lenses are formed on the light incident surface. The first reflective surface defines a recess for receiving the second and third reflective surfaces. The third converging lens is fed by the second reflective surface and the fourth converging lens is fed by the third reflective surface.
Abstract:
A photoelectric converter includes a circuit board, a laser diode, a plurality of optical sensors mounted on the circuit board, a transmission body, and a first lens set, a second lens set, and a plurality of optical fibers mounted on the transmission body. The transmission body defines a reflection groove and a plurality of optical signal splitting holes. A first sidewall of the reflection groove is inclined relative to the transmission direction of the optical signals. A bottom surface of each optical signal splitting hole is inclined relative to the first sidewall and to the second surface. The optical signals transmitted by the first lens set are reflected by the first sidewall. Most of the reflected optical signals are transmitted to the optical fibers via the second lens set, and a small remaining portion of optical signals are reflected by the bottom surface to the optical sensors.
Abstract:
A laser beam multiplexer capable of easily multiplexing a plurality of laser beams is provided. A laser beam multiplexer includes a multiplexing element having a hollow portion with a sectional elliptical shape, in which the multiplexing element includes: a plurality of light-incident apertures guiding laser beams from outside toward one of two focal points of the hollow portion, a reflective layer arranged on a wall surface of the hollow portion, and multiplexing a plurality of incident laser beams while reflecting the plurality of laser beams, and a light-emitting aperture guiding laser beams multiplexed by the reflective layer toward outside.
Abstract:
A device for measuring the concentration of a biological constituent based on infrared radiation emitted by a subject's eardrum with the influence of the eardrum's thickness taken into account is provided.The biological constituent concentration measuring device includes: a detecting section for detecting infrared radiation emitted by an eardrum; an acquisition section for acquiring thickness information about the thickness of the eardrum; and a computing section for figuring out the concentration of the biological constituent based on the infrared radiation detected and the thickness information acquired. The infrared radiation emitted by the eardrum is subject to the influence of the subject's eardrum thickness. Therefore, by calculating the biological constituent concentration based on not only the infrared radiation detected but also the eardrum thickness information, the biological constituent concentration can be measured highly accurately.
Abstract:
A high-speed optical sensing device is provided in the present invention. The high-speed optical sensing device has an optical detector, a lens set, and a beam splitter. The optical detector is utilized for detecting luminous intensity. The lens set is utilized for concentrating light beams toward a color analyzer. The beam splitter is aligned to the illuminating device to be detected and is utilized to separate the light beam generated by the illuminating device to the optical detector and the lens set simultaneously.
Abstract:
A structure includes a film having a plurality of nanoapertures. The nanoapertures are configured to allow the transmission of a predetermined subwavelength of light through the film via the plurality of nanoapertures. The structure also includes a semiconductor layer in connection with the film to facilitate the detection of the predetermined subwavelength of light transmitted through the film.
Abstract:
The present invention relates to an optical beam detection device for detecting deviation in the optical axis of light beams from a reference optical axis, the optical beam detection device provided with a converging member for converging the light beams; a light receiving surface that is disposed near the position where light beams that have an optical axis that coincides with the reference optical axis are converged by the converging member; an optical path deflector for deflecting light beams that have an optical axis that deviates from the reference optical axis, after they have passed through the converging member; and a light detecting element for detecting the light beams that have been deflected by the optical path deflector.