Abstract:
본 발명은 회절 격자의 교체나 관측 부분의 동작 없이도 인가되는 광의 파장에 대해 최상의 효율을 제공하도록 한 파장 가변 분광계 및 그 파장 가변 방법에 관한 것으로, 이를 위하여 관측할 외부 광원의 파장에 대해 최적 효율을 제공하는 입사각을 제공하도록 투과형 회절판을 회전 가능하도록 구성하고, 투과형 회절판의 회전과 입사광의 파장에 따라 회절 각도가 변화되는 광을 회절판의 회전과 입사광의 파장 변화에 무관하게 항상 동일 출력 경로로 광을 제공하는 거울을 배치하도록 함으로써, 관측을 위한 카메라의 움직임이나 회절판의 교체 없이도 항상 입사광의 파장에 따른 최적 회절 효율로 입사광의 스펙트럼을 획득할 수 있어 분광계의 크기를 줄이고, 비용을 줄이며, 고장 가능성을 줄일 수 있는 효과가 있다.
Abstract:
A field multiplexed dispersive imaging spectrometer (20). The novel system includes foreoptics (22) for receiving incoming electromagnetic energy, a disperser (24) disposed to receive energy from the foreoptics (22), and a focal plane array (28) disposed to receive energy from the disperser (24). The disperser (24) is a computer generated holographic disperser designed to disperse light into several, overlapping diffraction orders. In the preferred embodiment, the disperser (24) is designed with greater energy in the central, undiffracted order than in the other diffracted orders. The system (20) also includes a processor (30) which takes the data detected by the focal plane array (28) and generates a representation of the input image in several color bands using an iterative restoration algorithm (32).
Abstract:
A volume diffraction grating having a substrate and an optically active layer has a structure formed in the optically active layer. The structure is operational to diffract optical signals in two selected spectral bands. The grating may be formed in a high dispersion embodiment suitable for separating individual signals from composite signals of both spectral bands. Alternatively, the grating may be formed in a low dispersion version which can separate the composite signals from each other. In another embodiment, a second structure is formed in the optically active layer. Each of the structures is configured to be operational in one of the spectral bands, allowing signals in each band to be diffracted independently of one another. In another embodiment, the structure (s) may have a curved profile allowing the diffracted beams to be shaped or focused without the need for external lenses.
Abstract:
In the color imaging system (100), multiple rendering devices are provided at different nodes (102, 104) along a network (11). Each rendering device has a color measurement instrument for calibrating the color presented by the device. The rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen.
Abstract:
A method for manufacturing an optical grating. A substrate (810) is supported on a rotatable support at a first position relative to a pair of coherent light sources (C, D). A photosensitive layer (818) is formed on the surface of the substrate (810), and a mask (820) is formed over a first portion of the photosensitive layer (818), while leaving a second portion of the photosensitive layer (818) unmasked. The unmasked portion of the photosensitive layer (818) is holographically exposed to an interference light pattern from the light sources (C, D) to form a first grating surface pattern (826). The first grating surface pattern (826) is masked, and the mask (820) over the first portion of the photosensitive layer (818) is removed. The substrate (810) is rotated 180 degrees to a second position and the unmasked first portion is holographically exposed. The exposed photosensitive material is developed to form a grating on the substrate (810).
Abstract:
The invention concerns an optical component (1), which comprises preferably two prisms (2, 3) and an intermediate transmission grating (4). The radiation is directed by means of the prisms (2, 3) and the radiation is dispersed or collated by means of a grating (4) with big dispersion to direct the wished radiation wavelengths into wished directions.
Abstract:
An apparatus includes a substrate transmissive of electromagnetic energy of at least a plurality of wavelengths, having a first end, a second end, a first major face, a second major face, at least one edge, a length, a width, and a thickness, at least a first nanostructure that selectively extracts electromagnetic energy of a first set of wavelengths from the substrate; and an input optic oriented and positioned to provide electromagnetic energy into the substrate via at least one of the first or the second major face of the substrate. Nanostructures can take the form of photonic crystal arrays, a plasmonic structure arrays, or holographic diffraction gratings. The apparatus may be part of a spectrometer.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR s. An imaging spectrometer or a gas-filter correlation radiometer may be used to identify substances or materials such as oil spills, geology and mineralogy, vegetation, greenhouse gases, construction materials, plastics, explosives, fertilizers, paints, or drugs.
Abstract:
Eine Vorrichtung zum Erkennen und Überwachen von Inhaltsstoffen oder Eigenschaften eines Messmediums, beispielsweise von physiologischen Blutwerten, enthält eine Lichtquelle (20) zum Erzeugen von breitbandigem Messlicht (2) und zum Beaufschlagen eines Messbereichs (3) sowie Mittel (9) zum Auffächern des vom Messbereich (3) zurückgeworfenen Analyselichtes (4). Die Vorrichtung weist ausserdem einen Sensor-Array (11) zur Aufnahme des aufgefächerten Lichtes auf. Der Sensor-Array (11), die Lichtquelle (20) und die Mittel zum Dispergieren des Analyselichts (4) sind als kompakte Baueinheit in einem Gehäuse angeordnet.
Abstract:
A Spectrometer is provided including a camera and an axial symmetric camera mount configured to receive the camera and to rotate. The spectrometer furthers include an input for providing optical radiation to a spectrometer system; a diffraction grating for dispersing the optical radiation along a prescribed plane; at least one lens for focusing wavelength-dispersed light onto at least one array of a detector of optical radiation, wherein the camera has at least one linear array of elements for detecting optical radiation; a mechanical housing, wherein the axial symmetric camera mount is configured to couple the camera to the mechanical housing; and a means for rotating the camera coupled to the mechanical housing about an axis. Related systems and methods are also provided.