Abstract:
An apparatus for photometric measurement of biological liquids and a method of simultaneously measuring the presence or quantity of an analyte in a sample region are disclosed. The apparatus includes a plurality of spaced apart sample regions; a light source adapted to emit light including at least one frequency; a lens system including a light coupling system, wherein the light coupling system is disposed between the light source and the plurality of sample regions. A method is also disclosed including illuminating the sample region with a light beam emitted from a light source, wherein said light beam passes a light coupling system, the light coupling system including a telecentric element and a plurality of light mixing rods, wherein the light coupling system is disposed between the light source and the sample region such that the light beam is directed into the sample region.
Abstract:
An apparatus for photometric measurement of biological liquids and a method of simultaneously measuring the presence or quantity of an analyte in a sample region are disclosed. The apparatus includes a plurality of spaced apart sample regions; a light source adapted to emit light including at least one frequency; a lens system including a light coupling system, wherein the light coupling system is disposed between the light source and the plurality of sample regions. A method is also disclosed including illuminating the sample region with a light beam emitted from a light source, wherein said light beam passes a light coupling system, the light coupling system including a telecentric element and a plurality of light mixing rods, wherein the light coupling system is disposed between the light source and the sample region such that the light beam is directed into the sample region.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
An imaging device for biochemical or medical samples, the pulse mode light source of which incorporates flash lamps and a rotating mirror in an inclined position, the said mirror reflecting the light emitted by each flash lamp in turn along the same optical path to the sample. The flash lamps are switched on alternately in phases and synchronised with the rotating mirror and the emission light chopper, which comprises two rotating discs. The turning mirror directs the light at the sample from above and/or below, in which case a double-acting transparent scattering plate can be used.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
The invention relates to a multi-sensor laser system (1) for the selective trace analysis of organic material, the multi-sensor system having at least one laser ion mobility spectrometer (2), an absorption spectrometer (3) and a fluorescent measuring device (4). The system is characterised in that it is equipped with a device (8) for the simultaneous generation of a common laser beam (14) with different wavelengths and pulses for the simultaneous operation of the laser ion mobility spectrometer (2), the absorption spectrometer (3) and the fluorescent measuring device (4). This avoids the disadvantages of the known solutions in prior art and provides an improved solution for the highly sensitive and highly selective trace analysis of organic material, in particular hazardous substances such as explosives and warfare agents in the air.
Abstract:
The disclosure relates to processing SPR signals, in particular signals obtained by illuminating a conductive surface with light at two wavelengths. Embodiments involve processing a first and second signal indicative of an intensity of light, received from a conductive layer at which SPR has occurred, as a function of angle of incidence, reflection or diffraction at the layer (depending on whether the incident light beam is received by a detector recording it in reflection or transmission from the conductive layer). The first and second signals each have two dips corresponding to a respective wavelength of the light at a respective angle at which surface plasmon resonance occurs for the respective wavelength and a peak between the two dips. The processing includes deriving a first and second value of a quantity indicative of signal magnitudes in the region of the peak. The method then provides for comparing the first and second values to detect a change in refractive index at the layer after the first signal and before the second signal was captured.