Abstract:
An optical sensor (102) includes a sensor head (112; 304) that has an optical window (312, 314) for directing light into a flow of fluid and/or receiving optical energy from the fluid. The optical sensor (102) also includes a flow chamber (110) that includes a housing defining a cavity (356) for receiving the sensor head (112; 304). In some examples, the flow chamber (110) includes an inlet port (352) defining a flow nozzle that is configured to direct fluid entering the flow chamber (110) against the optical window (312, 314) of the sensor head (112; 304). In operation, the force of the incoming fluid impacting the optical window (312, 314) may prevent fouling materials from accumulating on the optical window (312, 314).
Abstract:
An optical sensor (102) includes a sensor head (112; 304) that has an optical window (312, 314) for directing light into a flow of fluid and/or receiving optical energy from the fluid. The optical sensor (102) also includes a flow chamber (110) that includes a housing defining a cavity (356) for receiving the sensor head (112; 304). In some examples, the flow chamber (110) includes an inlet port (352) defining a flow nozzle that is configured to direct fluid entering the flow chamber (110) against the optical window (312, 314) of the sensor head (112; 304). In operation, the force of the incoming fluid impacting the optical window (312, 314) may prevent fouling materials from accumulating on the optical window (312, 314).
Abstract:
An apparatus (100) and method for an alignment cell (108) are described herein. One apparatus includes a delivery fiber (112, 212, 312) and a delivery lens (232, 332) coupled to an optical bench (104), a mirror (234, 334) to receive light from the delivery fiber (112, 212, 312) through the delivery lens (232, 332) , wherein the received light is directed by the mirror (234, 334) to an ion trap (236, 336) on the trap surface, and a collection fiber (116, 216, 316) coupled to the optical bench (104) to receive light fluoresced from an ion in the ion trap (236, 336).
Abstract:
A turbidity sensor for underwater measurements is provided with a watertight housing, a light emitting diode, a first light focusing device for focusing a light emitted from the diode and passing the focused light into to-be-measured water, a second light focusing device for collecting at least one scattered light resulted form the focused light when passing the water, a photodiode for receiving the collected light thereby generating electronic signals, and an electronic board for processing the electronic signals.
Abstract:
본 발명은 홀모양 구조를 측정하는 자동 광학 검사 시스템을 제공하며, 상기 시스템은 광원장치, 이미지 캡처장치 및 이미지 처리 장치를 포함한다. 상기 광원장치는 측정대상의 벽특성 구역 및 면특성 구역을 포함하는 홀모양 구조에 제공된다. 상기 이미지 캡처장치는 미리 설정한 시각 및 개구수를 가지며, 상기 홀모양 구조의 이미지를 획득하도록 상기 홀모양 구조를 향하고 있다. 상기 이미지 처리 장치는 상기 홀모양 구조의 이미지의 이미지 특징 차이 및 상기 미리 설정한 시각에 따라 상기 홀모양 구조의 이미지 상의 상기 벽특성 구역 및 상기 면특성 구역을 판단한다.
Abstract:
광학 센서는 유체의 흐름으로 광을 지향하고 및/또는 유체로부터 광학 에너지를 수신하기 위한 광학 윈도우를 갖는 센서 헤드를 포함할 수 있다. 광학 센서는 또한 센서 헤드가 삽입될 수 있는 캐비티를 정의하는 하우징을 포함하는 흐름 챔버를 포함할 수 있다. 몇몇 예들에서, 흐름 챔버는 상기 센서 헤드의 광학 윈도우에 대해 흐름 챔버에 진입하는 유체를 지향하도록 구성되는 흐름 노즐을 정의하는 인렛 포트를 포함한다. 동작 시에, 상기 광학 윈도우에 부딪히는 인입하는 유체의 물리력은 오염 물질들이 상기 광학 윈도우 상에 축적되는 것을 방지할 수 있다.
Abstract:
Systems and methods are provided for a UV-VIS spectrophotometer, such as a UV-VIS detector unit included in a high-performance liquid chromatography system. In one example, a system for the UV-VIS detector unit may include a first light source, a signal detector, a flow path positioned intermediate the first light source and the signal detector, a second light source, and a reference detector. The first light source, the signal detector, and the flow path may be aligned along a first axis, and the second light source and the reference detector may be aligned along a second axis, different than the first axis.