Abstract:
The invention provides a high resolution, wide dynamic range, multi-colour detection platform for microfluidic analysers/instruments and methods. The detection platform uses multiple high gain semiconductor optical sensors for the detection of luminescence from cellular or biological samples. The digitized outputs from these sensors are combined and weighted in a signal processing unit, using pre-determined algorithms for each colour, which optimise the resolution in each of these high gain semiconductor optical sensors while extending the dynamic range of the detection platform.
Abstract:
Es wird eine Gassensoranordnung mit einer Strahlungsvorrichtung, einem Gasmessraum, einer Detektorvorrichtung und einer Auswertevorrichtung vorgeschlagen, wobei die Auswertevorrichtung die Strahlungsvorrichtung steuert, die Detektorsignale aufzeichnet und auswertet und die Messgaskonzentration abhängig vom Ausgangssignal der Detektorvorrichtung bestimmt. Die Strahlungsvorrichtung weist mindestens zwei Messstrahlungsquellen und mindestens eine Referenzstrahlungsquelle auf, welche jeweils die Strahlung in mindestens einem Absorptionsband des zu detektierenden Gases, dem Messband, sowie die Strahlung in mindestens einem durch das Messgas nicht absorbierenden spektralen Band, dem Referenzband, ausstrahlen. Die Detektorvorrichtung ist so aufgebaut, dass sie die Strahlung nach deren Durchgang durch den Gasmessraum in einem Mess- bzw. in einem Referenzband jeweils räumlich und/oder zeitlich getrennt unabhängig empfangen kann, wobei die Auswertevorrichtung die Strahlungsquellen nach einem bestimmten Steuerungsalgorithmus betreibt und die Ausgangssignale der Detektorvorrichtung im Mess- und/oder im Referenzband beim Einschalten einer der Strahlungsquellen oder beim Strahlungsquellenvergleich feststellt und vergleicht, eine eventuelle Alterung der Gassensoranordnung kompensiert und die Messgaskonzentration bestimmt.
Abstract:
This application relates to method and apparatus for gas analysis. An apparatus (200) may have a first reflector (103) and a second reflector (104) positioned on either side of a sample volume (202) for a gas sample. The configuration of the first reflector may be variable between at least first (103a) and second (103) configurations, wherein each of the first and second configurations is arranged such that a beam of optical radiation from an optical beam origin (210) is directed to a detector location (212) via the sample volume. In the second configuration the beam of optical radiation is reflected at least once from each of the first and second reflectors and the path length of the beam of optical radiation through the sample volume is greater than in the first configuration.
Abstract:
The invention provides a high resolution, wide dynamic range, multi-colour detection platform for microfluidic analysers/instruments and methods. The detection platform uses multiple high gain semiconductor optical sensors for the detection of luminescence from cellular or biological samples. The digitized outputs from these sensors are combined and weighted in a signal processing unit, using pre-determined algorithms for each colour, which optimise the resolution in each of these high gain semiconductor optical sensors while extending the dynamic range of the detection platform.
Abstract:
Fluid processing tube for use in optical analysis comprising at least one first portion being made from a first material suitable for optical analysis and being configured to include two optical paths of different lengths, and at least one second portion connected to said first portion and being made from a second material different from said first material.
Abstract:
A flow cell (16) for absorbance detection with at least two different optical pathlengths (30, 32). It increases the range of analyte concentrations which can be measured compared with a conventional single path flow cell. Light from two paths (30, 32) is combined onto the same photodetector (20). Calibration with known samples allows analyte concentrations to be measured. The dual or multi-pathlength flow cell may be used in equipment designed for single path flow cells.
Abstract:
The optical transmission factor of an object (A) is measured by mutual measuring technology using a pair of identical units (44, 50) located on opposite sides of the object. Each of the units (44, 50) comprises a pair of beam splitters (47, 48; 53, 54), a light source (45, 46; 51, 52) for illuminating the object through a first beam splitter (47) and providing an offset beam (56) from the first beam splitter (47), and a photo-detector (49, 55) for converting optical power from the other unit (50) and the offset beam (56). Each of the beam splitters (47, 48; 53, 54) is substantially in parallelogram shape with two pairs of confronting planes (24, 25; and 22, 23), a first pair of the planes (24, 25) being not perpendicular to the second pair of planes (22, 23). One of the first pair of planes (24) is mirror coated for reflecting the beam internally, such that split beams (29, 31) obtained from a single beam (27) share a common point (200) on the plane (23). Thus, dust and dirt free measurement using no mechanically moving means is accomplished.