Abstract:
To provide sufficient sensitivity, spectral resolution and speed of measurement for field environmental measurements in a portable spectroradiometer, a silicon photodiode receives light: (1) having a bandwidth in the range of between 2 and 15 nm (nanometers) from a pivotable concave holographic diffraction grating within the wavelength range of between 250 and 1150 nm at a scanning rate in the range of 20 to 100 nm per second; (2) having stray light of high intensity and undesired frequencies and the shorter wavelength harmonics of the selected frequency range blocked by filters; and (3) having flux of a least 10 microwatts per square meter of diffuser plate for each nanometer of bandwidth. Automatic electrical zeroing is obtained by blocking all light once at the beginning of each scan, obtaining an electrical drift-related signal and using the drift signal to ad- just the measured signal during the scan. Several different sensing interfaces can be used, including a quartz, light fiber probe having at least a 50% packing density and a cone angle of at least 24 degrees. The data and the programming storage is at least 30K bytes but the instrument uses no more than two watts of power when the instrument is not scanning.
Abstract:
An active-source-pixel, integrated device capable of performing biomolecule detection and/or analysis, such as single-molecule nucleic acid sequencing, is described. An active pixel of the integrated device includes a sample well into which a sample to be analyzed may diffuse, an excitation source for providing excitation energy to the sample well, and a sensor configured to detect emission from the sample. The sensor may comprise two or more segments that produce a set of signals that are analyzed to differentiate between and identify tags that are attached to, or associated with, the sample. Tag differentiation may be spectral and/or temporal based. Identification of the tags may be used to detect, analyze, and/or sequence the biomolecule.
Abstract:
Aspects of the present disclosure include reconfigurable integrated circuits for characterizing particles of a sample in a flow stream. Reconfigurable integrated circuits according to certain embodiments are programmed to calculate parameters of a particle in a flow stream from detected light; compare the calculated parameters of the particle with parameters of one or more particle classifications; classify the particle based on the comparison between the parameters of the particle classifications and the calculated parameters of the particle; and adjust one or more parameters of the particle classifications based on the calculated parameters of the particle. Methods for characterizing particles in a flow stream with the subject integrated circuits are also described. Systems and integrated circuit devices programmed for practicing the subject methods, such as on a flow cytometer, are also provided.
Abstract:
Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.
Abstract:
Provided is an apparatus for acquiring and projecting a broadband image. The apparatus includes a probe unit provided with a white light source unit configured to emit white light for acquiring a visible light image to a subject, a fluorescence excitation light source unit configured to emit fluorescence excitation light for acquiring an invisible light fluorescence image, an image acquisition unit configured to receive an invisible light fluorescence image signal for the subject, and an image projection unit configured to project an image onto the subject; and an image processing unit configured to process an image received from the image acquisition unit. This apparatus may simultaneously acquire and display the visible light image and the invisible light fluorescence image.
Abstract:
Apparatus and methods may provide for determining a value of chemical parameter. One or more light emitters may be positioned within a housing to emit light through an aperture of the housing. The emitted light may illuminate a color area of a structure that is separable from the housing, such as a test strip, a printed color reference, and so on. A color sensor may be positioned within the housing to capture reflected light and to convert the reflected light to an initial digitized color space that may be usable to determine a color shade of a color area. The reflected light may, for example, be captured independently at least of a dimension (e.g., predetermined size, shape, etc.) of the color area.
Abstract:
An open scattered light smoke detector for detecting smoke may include a light transmitter for emitting light, a light receiver spectrally matched to the light transmitter, and a control unit configured to repeatedly actuate the light transmitter, with a pulsed signal sequence, to emit corresponding light pulses, evaluate temporally a signal sequence received by the light receiver, and output a fire alarm if a received signal strength exceeds a minimum value for the smoke concentration. The control unit may be configured to switch the detector from a normal operating mode into a service mode if a phase angle between an emitted and received signal sequence, as determined on the detector side, increases by a minimum angular value which, in terms of the travel time, corresponds technically to an increase in the optical path length from the light transmitter to the light receiver of more than some predefined distance.
Abstract:
A method of determining a surface condition of a road of travel. A light beam directed at a surface in the road of travel is transmitted utilizing a lidar system. A response is analyzed at a photodetector of the lidar system after transmitting the light beam. A determination is made whether a form of precipitation is present on the road of travel in response to analyzing the response at the photodetector. A precipitation indicating signal is generated in response to the determination that the ground surface includes a form of precipitation on the road of travel.
Abstract:
An egg identification system for determining viability of an avian egg is provided. Such a system includes an emitter assembly configured to emit electromagnetic radiation toward an egg. A detector assembly is axially aligned with the emitter assembly to detect electromagnetic radiation transmitted through the egg. The detector assembly is spaced-apart from the egg during operation thereof such that the detector assembly does not contact the egg. The detected electromagnetic radiation is used to generate an output signal. The output signal is processed to determine whether there exists a periodic variation or an aperiodic perturbation in an intensity of the electromagnetic radiation transmitted through the egg corresponding to action of a heart or embryo movement, wherein the existence of the periodic variation or aperiodic perturbation indicates that the egg is viable. An associated method is also provided.