Abstract:
A RF electrode for generating, plasma in a plasma chamber comprising an optical feedthrough. A plasma chamber comprising an RF electrode and a counter-electrode with a substrate support for holding a substrate, wherein a high-frequency alternating field for generating the plasma can be formed between the RF electrode and the counter-electrode. The chamber comprising an RF electrode with an optical feedthrough. A method, for in situ analysis or in situ processing of a layer or plasma in a plasma chamber, wherein the layer is disposed on counter-electrode and an RF electrode is: disposed on the side lacing the layer. Selection of an RF electrode having an optical feedthrough, and at least one step in which electromagnetic radiation is supplied through the optical feedthrough for purposes of analysis or processing of the layer or the plasma, and by at least one other step in which the scattered or emitted or reflected radiation is supplied to an analysis unit.
Abstract:
An inorganic field emission device includes a first electrode, a second electrode spaced apart from the first electrode, and a light emitting layer disposed therebetween. A dielectric layer is disposed between the first electrode and the light emitting layer and/or between the second electrode and the light emitting layer. A field reinforcing layer is disposed between a dielectric layer and the light emitting layer and includes carbon nanotubes having a length of about 20 nanometers to about 1 micrometer.
Abstract:
An inorganic field emission device includes a first electrode, a second electrode spaced apart from the first electrode, and a light emitting layer disposed therebetween. A dielectric layer is disposed between the first electrode and the light emitting layer and/or between the second electrode and the light emitting layer. A field reinforcing layer is disposed between a dielectric layer and the light emitting layer and includes carbon nanotubes having a length of about 20 nanometers to about 1 micrometer.
Abstract:
An electrode in a plasma display panel and a fabrication process thereof that is capable of reducing a line width of the electrode without increasing a resistance component of the electrode. In the method, a bus electrode is provided by laminating a metal film on a certain substrate and then patterning it. A transparent electrode is provided on the substrate in a shape of surrounding the bus electrode. Accordingly, the electrode is provided by the metal film such that a limit for a selection in a width or thickness of the electrode, so that a line width of the electrode can be reduced to improve the visible light transmissivity and the electrode is formed into a large thickness instead of making a minute electrode width to lower the resistance component, thereby reducing a power consumption of the PDP.
Abstract:
Methods for making low work function electrodes either made from or coated with an electride material in which the electride material has lattice defect sites are described. Lattice defect sites are regions of the crystal structure where irregularities and deformations occur. Also provided are methods for making electrodes which consist of a substrate coated with a layer of a compound comprised of a cation complexed by an electride former, in which said complex has lattice defect sites. In addition, methods for making electrodes which consist of a bulk metal coated with a layer of an electride former having lattice defect sites are described. The electride former stabilizes the loss of electrons by surface sites on the metal, lowering the work-function of the coated surface.
Abstract:
A field emitter array comprises a plurality of cathode electrodes and an anode electrode disposed opposite to the plurality of cathode electrodes. And the anode electrode is provided with a plurality of protrusions having a cap material disposed on the tip of each protrusion. A voltage below a designated value is applied between a gate electrode and the cathode electrodes, and electrons are released only from a cathode electrode with a low emission start voltage. When the electrons are emitted to the cap material provided on the protrusions, the cap material is sputtering-evaporated and is affixed to the cathode electrode. Then a cap is disposed on the each of the cathode electrodes. Then, the emission properties between each cathode electrode are consequently rendered uniform, thereby increasing the emission start voltage and maximum applied voltage of the overall field emitter array.
Abstract:
An electron generation apparatus comprises a discharge pin module (150) provided with discharge pins (155) coupled to a support plate (151), and an elastic connection element (158) electrically connecting a group of discharge pins, a discharge plate (160) facing the discharge pins, a support structure (140) positioned at an opposite side to the discharge plate and provided with a coupling plate (145) to which the discharge pin module and the discharge plate are detachably coupled, and a circuit module (130) provided with a main board (131) and distribution processing boards (135) connected to the main board to apply individual high-voltage high-frequency pulsed power to the group of discharge pins. The coupling plate is provided with connection protrusions (146) each electrically connected to the distribution processing boards. An end of the elastic connection element comes into contact with the connection protrusion.
Abstract:
A mesh electrode adhesion structure includes: a substrate (130), and an opening defined in the substrate; a mesh electrode (150) on the substrate, and a first combination groove (160) defined in the mesh electrode; and an adhesion layer (140) between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
Abstract:
A low-resistance, fine electrode is formed by baking in air a photosensitive paste which has an inorganic component containing copper powder, boron powder, and glass frit, and an organic component containing a photopolymerization initiator, monomer, and organic vehicle, and in which the average particle size of the copper powder is 2.5 μm or less, and the content of boron powder based on the total amount of copper powder and boron powder is 8 to 25 wt%.
Abstract:
Disclosed is a transparent carbon nanotube (CNT) electrode using a coriductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode.