Abstract:
In a field emission device, the fundamental cause of spherical aberration in an emitted electron beam trajectory is eliminated or mitigated. An aberration suppressor electrode 31 is provided at a lower vertical position than an extraction gate electrode 13 so its opening inner peripheral edge 31e faces a position near an emitter tip 11tp. The vertical position of the opening inner peripheral edge 31e of the aberration suppressor electrode 31 is made lower than the vertical position of the emitter tip 11tp. An aberration suppressing voltage Vsp is applied to the aberration suppressor electrode 31 that is a lower voltage than the potential of the emitter 11 and controls equipotential lines near the emitter tip 11tp to make them parallel.
Abstract:
A mesh electrode adhesion structure includes: a substrate, and an opening defined in the substrate; a mesh electrode on the substrate, and a first combination groove defined in the mesh electrode; and an adhesion layer between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
In a field emission device, the fundamental cause of spherical aberration in an emitted electron beam trajectory is eliminated or mitigated. An aberration suppressor electrode 31 is provided at a lower vertical position than an extraction gate electrode 13 so its opening inner peripheral edge 31e faces a position near an emitter tip 11tp. The vertical position of the opening inner peripheral edge 31e of the aberration suppressor electrode 31 is made lower than the vertical position of the emitter tip 11tp. An aberration suppressing voltage Vsp is applied to the aberration suppressor electrode 31 that is a lower voltage than the potential of the emitter 11 and controls equipotential lines near the emitter tip 11tp to make them parallel.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
A mesh electrode adhesion structure includes: a substrate, and an opening defined in the substrate; a mesh electrode on the substrate, and a first combination groove defined in the mesh electrode; and an adhesion layer between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
Abstract:
A mesh electrode adhesion structure includes: a substrate (130), and an opening defined in the substrate; a mesh electrode (150) on the substrate, and a first combination groove (160) defined in the mesh electrode; and an adhesion layer (140) between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.