Abstract:
A substrate structure including a bottom organic layer, at least one inorganic layer, at least one organic layer and at least one protruding object is provided. The at least one protruding object is protruded from an upper surface of the bottom organic layer or the organic layer. A maximum height of the protruding object protruded from the upper surface of the bottom organic layer or the organic layer is H, and a thickness of the organic layer covering the protruding object is T, wherein T≧1.1H.
Abstract:
A substrate structure including a bottom organic layer, at least one inorganic layer, at least one organic layer and at least one protruding object is provided. The at least one protruding object is protruded from an upper surface of the bottom organic layer or the organic layer. A maximum height of the protruding object protruded from the upper surface of the bottom organic layer or the organic layer is H, and a thickness of the organic layer covering the protruding object is T, wherein T≧1.1 H.
Abstract:
An electron gun having: a cathode for emitting electrons; a first Wehnelt electrode equipped with a first aperture through which electrons are allowed to pass; and a second Wehnelt electrode that is equipped with a second aperture disposed at a predetermined position with respect to the cathode and the first aperture, and that is furnished at a position closer to the cathode than the first Wehnelt electrode, wherein: the cathode and the second Wehnelt electrode are included within a single assembly constituting a unitary body; and the assembly is detachably attached to the first Wehnelt electrode. Replacement of the cathode can be performed by detaching the cathode unit from the first Wehnelt electrode, and then ejecting the cathode unit out from the Wehnelt cover. The emitter of the cathode can thereby be reliably positioned with respect to the second aperture.
Abstract:
A pin-shaped discharge electrode is provided which prevents corrosion and promotes stable glow discharge. In order to reduce the occurrence of a large field near the bottom of the electrode, the electrode is embedded in a cavity of an insulating base plate.
Abstract:
A multicell x-ray detector includes a chamber for confining a gas that produces electron-ion pairs incidental to absorbing radiation. A unitary multicell electrode assembly is mounted within the chamber. The assembly includes a plurality of electrode plates secured in first and second insulating members. A method is provided for bonding the electrode plates into the insulating members with a uniform distribution of adhesive which does not allow the adhesive to bridge between adjacent plates. The opposed ends of the plurality of electrode plates are inserted into grooves of the members. A relatively non-viscous liquid adhesive is brought into contact with one edge of each of the grooves of both members by a cellular applicator until the adhesive propagates by capillary action along the entire length of each groove. The cellular applicator and the adhesive are such that the adhesive has a greater adhesive attraction to the applicator than to the adjacent plates, and such that the adhesive has a lesser adhesive attraction to the applicator than to the grooves of the members. The adhesive will therefore flow from the applicator to the grooves of each member until each groove is filled and any excessive adhesive will be attracted back to the applicator, rather than to the adjacent plates of the assembly. The adhesive is then cured.
Abstract:
A photomultiplier tube in which the anode, which is positioned adjacent to the last dynode, is not supported by the side supports which support the dynodes as was done in the prior art, but is supported by the stem. Thus, the anode "floats" with respect to the side supports and with respect to the dynodes which are rigidly attached to the side support. An advantage of this structure is improved electrical properties, e.g., a reduction in dark current, improved signal to noise ratio and reduction in hysteresis. The floating anode is particularly applicable to box and grid type of dynode structures used in small diameter, e.g., one-half and three-fourth inch tubes.
Abstract:
Provided is an x-ray tube capable of easily and stably performing a focus dimension variable control and a tube current control. The x-ray tube is equipped with a cathode (10) having a filament (11) and a trench portion (16) in which the filament (11) is housed. In the x-ray tube, the trench portion (16) has: a pair of first bottom surfaces (S1) having the same plane as a plane on which the filament (11) is positioned and sandvviching the filament (11) in the width direction (db) of the trench potion (16); and second bottom surfaces (S2) sandwiching the filament (11) and the pair of first bottom surfaces (S1) in the length direction (da) of the trench portion (16) and positioned on the more opening (16a) side of the trench portion (16) than the pair of first bottom surfaces (S1).
Abstract:
An integrated electron-tube structure which may be employed for a rugged, low-cost cathode-ray tube in which a very high stability electron-beam is required. The structure is manufactured by simultaneous reaction bonding of selectively metallized ceramic elements (7), (9) and (12) to metal elements (5), (8), (11) and (15) under a small axial load indicated by the arrows (3) at a temperature slightly below the melting point of the metal. A similarly-integrated deflection-electrode structure and anode assembly may be attached to the ring (15) and an assembly of standard thermionic cathode components may be attached to the ring (5). The structure is especially suitable for use with a semiconductor target element.