Abstract:
A high resolution hyperspectral imaging apparatus (10) for analyzing atmospheric constituents. The apparatus (10) includes an optical telescope that receives an optical beam to be analyzed. A beam splitter (20) separates the optical beam into a first beam and a second beam that have separate wavelengths. A first spectrograph (72) analyzes the first beam and a second spectrograph (74) analyzes the second beam. Both spectrographs (72, 74) include a lens assembly (36, 44), a grating (42, 50) and a detector (54, 52). The gratings (42, 50) separate the beams into representative wavelengths that are recorded by the detectors (54, 52).
Abstract:
An apparatus for and method of calculating an integrated index of a transparent, translucent or opaque material for a desired wavelength range, the method comprising measuring a filtered value of the material as a function of wavelength within the desired wavelength range and calculating a protection index from the measured filtered value. The integrated index is used to quantify the ultraviolet, infra-red, erythemal or aphakic exposure properties of the material. In addition, the integrated index is used to quantify the photopic and/or scotopic response capabilities of the material. Further, the integrated index is used to quantify the differential or mean color indices of the material in comparison to the color spectrum or another material. Moreover, the integrated index is used to quantify the heat flux absorbed by the material.
Abstract:
In an imaging apparatus, a detection section 9 detects a beam LF having passed through an aperture 5 in a first direction and a location designation beam LB having passed through the aperture 5 in the opposite direction is made incident to a position (x,y) in a first light image IM1 on an image pickup surface corresponding to a specific position (x,y) in a second light image IM2, whereby the result of detection of the beam LF detected at the detection section 9 indicates data at a specific position in an incoming light image designated by the location designation beam LB, regardless of whether there is a mechanical error in movement of the aperture 5.
Abstract:
There is provided a tunable filter with a wavelength monitor, that comprises a wavelength selector 3, a separator for separating a part of a transmitted light beam or a reflected light beam when a wavelength is swept by the wavelength selector, and a monitor 6 for monitoring a part of the separated light beam.
Abstract:
A spectrometer for measuring the intensity of light, comprises a grating having a major axis, a first entrance aperture aligned with the grating major axis and configured to direct light energy onto the grating, wherein the grating is adapted to produce a focused light beam, a first exit aperture aligned with the grating major axis and configured to accept the focused light beam, a second entrance aperture configured to direct the light energy onto the grating, wherein the second entrance aperture is offset from the grating major axis, and a second exit aperture configured to accept the focused light beam.
Abstract:
An evanescent-wave optical biosensor includes a hollow optical waveguide, preferably in the form of a light-conductive capillary, surrounding a central waveguide preferably in the form of an optical fiber to create a sealed cavity. A source of optical energy as from a laser is directed into one or both of the light-input ends of the capillary and fiber, such that an evanescent field extends into the cavity from one or both of the inner surface of the capillary and the outer surface of the fiber. A first biomolecular constituent is attached to one or both of the inner wall of the hollow optical waveguide and the outer surface of the second optical waveguide, such that the first biomolecular binding partner is substantially within the evanescent field if present. A first optoelectric detector is supported to receive light from the light-output end of the capillary and convert the light received into a first electrical signal, and a second optoelectric detector is supported to receive light from the light-output end of the fiber and convert the light received into a second electrical signal. A fluid within the cavity which may contain a second biomolecular constituent having a binding affinity to the first biomolecular constituent, such that if binding occurs between the biomolecular constituents, a representative change occurs in the light emerging from one or both of the output ends of the hollow and second optical waveguides and the electrical signals from the optoelectric detectors.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
In an optical spectrum analyzer comprising a spectrograph and a photodevice array, and an optical spectrum detecting method, a wavelength deviation, from an assigned wavelength, of a light detected by a photodevice array which detects a wavelength of a diffraction light or a non-diffraction light from an acoustooptic device, is detected and a feedback control to a diffraction angle of the acoustooptic device is performed. Also, without using a feedback control, an exit light and a diffraction light from the acoustooptic device are respectively received by two photodevice arrays and the photodevices are arranged in order to mutually compensate gaps between the photodevices, whereby a center of each photodevice is similarly made coincide with a peak of an optical beam to be received.
Abstract:
A small-spot imaging, spectrometry instrument for measuring properties of a sample has a polarization-scrambling element, such as a birefringent plate depolarizer, incorporated between the polarization-introducing components of the system, such as the beamsplitter, and the microscope objective of the system. The plate depolarizer varies polarization with wavelength, and may be a Lyot depolarizer with two plates, or a depolarizer with more than two plates (such as a three-plate depolarizer). Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, the perturbation may be narrower than the wavelength resolution of the instrument.
Abstract:
A dispersive spectrometer whose dispersive element is aligned such that the direction of dispersion is essentially perpendicular to the collimating plane, which is the plane of the input beam path between the centers of the input slit, the collimating mirror and the dispersive element. As a result of this construction, the lateral spread over which the beam path traverses is reduced, since use is also made of the direction perpendicular to the input beam path plane for the dispersive spread of the beam, and the spectrometer is thus of compact construction.