Abstract:
A network of modular, multitier user's device (mobile unit) that identifies wear, tear and stains, and repairs and refurbishes indoor and outdoor of a house or building using historical data. The user's device also provides interior decoration and designing support, and supports bidding from the handymen or repair contract companies as well. In addition, the user's device supports subsequent promotions and sales, walls and floor underground mapping. A tier 3 user and manufacturer cloud based systems and services provides support for a plurality of the user's devices, to perform abovementioned functionalities. In addition, a tier 3 handyman/repair contract company server and tier 1-2 handyman/repair contract company device provide, sales and after sales support for the user's devices. Moreover, the infrastructure also provides layer based mapping services and supports an augmented reality presentation for the authorized people.
Abstract:
Provided is an electric cleaning device capable of easily and reliably directing a camera toward an object and imaging the object. An electric cleaning device includes an electric vacuum cleaner main body capable of autonomously traveling, and a charging device that guides the electric vacuum cleaner main body, and can image an object. A control part has an imaging mode in which the control part makes a main body case travel so as to approach the charging device in line with guide signals received by a light receiving part, and performs imaging in a set direction with a camera based on the guide signals when the main body case reaches a position at a predetermined distance from the charging device.
Abstract:
A method of controlling a robot cleaner includes recognizing information on a monitoring standby position by a robot cleaner, moving to the monitoring standby position at a monitoring start time by the robot cleaner, acquiring an image, by an image acquisition unit of the robot cleaner, at the monitoring standby position, determining whether an event has occurred, by the robot cleaner, based on the image acquired by the image acquisition unit, transmitting the image acquired by the image acquisition unit to an external remote terminal when it is determined that the event occurred.
Abstract:
A vacuum cleaner capable of more efficiently cleaning narrow spots while effectively avoiding an object. An object sensor provided in a main casing detects the presence or absence of an object within a specified distance in a plurality of directions on a forward side of the main casing. A control unit controls operation of driving wheels, based on detection of an object by the object sensor to thereby make the main casing autonomously travel. When an object is detected by the object sensor, the control unit controls the operation of the driving wheels, so that the main casing is swung to an angle corresponding to a direction of the detected object to thereby make a side portion of the main casing face the object.
Abstract:
An electric vacuum cleaner includes a main body case, driving wheels, and a cleaning portion. The main body case includes an electric blower, and a dust collecting portion communicating with a suction side of the electric blower. The driving wheels allow the main body case to travel on the surface to be cleaned. The cleaning portion includes a main body portion, the suction port, and wheels. The main body portion with a bottom surface portion facing the surface to be cleaned is located in a lower portion of the main body case and can move up and down. The suction port is provided on the bottom surface portion and communicates with the dust collecting portion. The wheels protrude downward from the bottom surface portion to contact the surface to be cleaned, thereby causing the main body portion to move up and down to trace the surface to be cleaned.
Abstract:
A docking station (20) and a robot (22) for docking therein, include corresponding transmission parts. These transmission parts are for the transmission of energy, such as electricity, for recharging the robot (22), and/or signals, for operating the robot (22), the energy and/or signals passing between the docking station and the robot (22). The docking station (20) and robot (22) are such that the docking of the robot (22) in the docking station (20) is at a horizontal orientation, as the transmission part on the robot (22) includes laterally protruding docking contacts that contact corresponding laterally oriented contact arms of the docking station (20).
Abstract:
A charging unit for charging a battery of a self-propelled electric vacuum cleaner which runs on a floor based on outputs of an infrared beam reflection-type floor detection sensor and an infrared beam detection sensor, includes an infrared beam-transmitting unit for emitting an infrared beam for indicating a return path and an infrared beam-absorbing part, in which the infrared beam-transmitting unit and the infrared beam-absorbing part are provided such that the infrared beam detected by the infrared beam detection sensor and the infrared beam absorbing part detected by the floor detection sensor allow the vacuum cleaner to return to the charging unit.
Abstract:
The invention relates to a floor treatment robot having an autonomously movable floor treatment appliance and having a housing. The housing of the floor treatment appliance has a standing area on the top side for supporting a person. At least one load cell is provided. The load cell is suitable for measuring the weight of the person. This floor treatment robot solves the technical problem of reducing the space requirement for different domestic appliances.
Abstract:
The present invention provides a robot cleaner comprising: a main body which forks an outer appearance; a driving unit for moving the main body; a cleaning unit, installed at the lower portion of the main body, for sucking filth or dust on a floor surface in the air; light emitting units which are installed at the lower portion of the main body and configured to externally emit light according the driving condition of the driving unit; and a controller for controlling the plurality of light emitting units so that the light emitting units emit light in forms different from each other according to each of a first driving condition where the main body is stopped, a second driving condition where the main body moves, and a third driving condition where the main body rotates.
Abstract:
Provided is an electric cleaning device capable of easily and reliably directing a camera toward an object and imaging the object. An electric cleaning device includes an electric vacuum cleaner main body capable of autonomously traveling, and a charging device that guides the electric vacuum cleaner main body, and can image an object. A control part has an imaging mode in which the control part makes a main body case travel so as to approach the charging device in line with guide signals received by a light receiving part, and performs imaging in a set direction with a camera based on the guide signals when the main body case reaches a position at a predetermined distance from the charging device.