Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
Disclosed embodiments relate to a combined shipping container and balloon deployment system for deploying balloons into a balloon network. Such a shipping container may allow one or more balloons to be transported to a desired launch location, and then launched directly from the shipping container.
Abstract:
A laminated wing structure includes at least one layer of metal material and at least one layer of a shape memory polymer (SMP) material. The SMP is heated to a temperature in its glass transition band Tg to roll the wing around the air vehicle into a stored position. The metal layer(s) must be thin enough to remain below its yield point when rolled up. In preparation for launch, the SMP material is thermally activated allowing the strain energy stored in the layer of metal material to return the wing to its deployed position at launch. Once deployed, the SMP cools to its glassy state. The SMP material may be reinforced with fiber to form a polymer matrix composite (PMC). SMP may be used to provide shear strain relief for multiple metal layers. By offloading the motive force required to return the wing to its original deployed position from the SMP to the metal, the polymer does not acquire a permanent set and the wing may be deployed accurately.
Abstract:
A method and apparatus comprising a platform, a battery system, a power generation system, a number of charging stations, and a controller. The platform is configured to house a number of unmanned aerial vehicles. The power generation system is connected to the battery system. The power generation system is configured to generate electrical energy from an environment in which the platform is located, and store the electrical energy in the battery system. The number of charging stations is connected to the battery system. The controller is connected to the battery system and is configured to receive sensor data from the number of unmanned aerial vehicles, generate information from the sensor data, and send the information to a remote location.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
The system comprises an outer container which is fixed, directly and fully, in the hold of the transport aeroplane (AC), and in which there is an inner container that can be moved longitudinally and brought from a first carrying position (AC) in which it is situated fully inside said outer container into a second off-loading position (P2), position (P2) in which it is longitudinally offset towards the rear of the aircraft (AC) so that a part of said inner container is then situated outside the transport aeroplane (AC).
Abstract:
A system for launching an unmanned aerial vehicle (UAV) payload includes a launch tube, liquid rocket, and launch control assembly. The rocket is positioned in the launch tube and contains the UAV payload. A booster assembly may include a canister partially filled with liquid. A gas cylinder is filled with compressed gas. The liquid is pre-pressurized by the gas or mixed with the gas right before launch such that, upon launch, liquid and gaseous thrust stages launch the rocket to a threshold altitude. The UAV payload deploys after reaching the threshold altitude. Optional stability tubes may be connected to the launch tube, which may be buoyant for water-based operations. An optional tether may be connected to the liquid rocket for arresting its flight prior to reaching apogee. The UAV payload is not launched directly by the gas/liquid mix. A method of launching the UAV payload is also disclosed.
Abstract:
A system and method for deploying a payload with an aerostat uses a mobile transporter for moving the system to a deployment site. Structurally, the system includes a base unit with a rotation head mounted thereon. An envelope container for holding a deflated aerostat is mounted on the rotation head and a rotation of the container on the rotation head positions the aerostat for optimal compliance with the existing wind condition. Also included in the system is an inflator that is mounted on the base unit to inflate the aerostat with a Helium gas. And, the system includes a tether control unit for maintaining a connection with the aerostat during its deployment, in-flight use, and recovery. Preferably, a deployment computer is used for a coordinated control of the rotation head, inflator and tether.
Abstract:
A launch and capture system for capturing a vertical take-off and landing (VTOL) vehicle having a thruster and a duct configured to direct airflow generated by the thruster includes a capture plate and an extension. The capture plate is configured to alter the airflow and generate a force attracting the duct to the capture plate. The extension is coupled to the capture plate, and is configured to at least facilitate holding the VTOL vehicle against the capture plate.
Abstract:
An unmanned air vehicle for military, land security and the like operations includes a fuselage provided with foldable wings having leading edge flaps and trailing edge ailerons which are operable during ascent from launch to control the flight pattern with the wings folded, the wings being deployed into an open unfolded position when appropriate. The vehicle is contained within a pod from which it is launched and a landing deck is provided to decelerate and arrest the vehicle upon its return to land.