Abstract:
An optical coherence tomography system uses an optical source that comprises a series of gain waveguides that generate light at the frequencies at which the interference signal is to be sampled. In this way, the optical source generates a discretely tuned optical signal. This has the advantage that the tuning can be directly controlled by a controller that is also used to synchronize the sampling of the interference signal. This avoids the need for separate frequency clock synchronization. In embodiments, the gain waveguides are fabricated from one or more semiconductor edge emitting bars. In some implementations, the gain waveguides comprise periodic structures that define the frequency of operation of the waveguide. However in other implementations, the combiner comprises a dispersive element, such as a diffractive grating, that provides frequency specific feedback to each waveguide.
Abstract:
An optical detector system comprises a hermetic optoelectronic package, an optical bench installed within the optoelectronic package, a balanced detector system installed on the optical bench. The balanced detector system includes at least two optical detectors that receive interference signals. An electronic amplifier system installed within the optoelectronic package amplifies an output of at least two optical detectors. Also disclosed is an integrated optical coherence tomography system. Embodiments are provided in which the amplifiers, typically transimpedance amplifiers, are closely integrated with the optical detectors that detect the interference signals from the interferometer. Further embodiments are provided in which the interferometer but also preferably its detectors are integrated together on a common optical bench. Systems that have little or no optical fiber can thus be implemented.
Abstract:
A movable MEMS mirror system with a mirror position detection system, such as a capacitive sensor, is calibrated using a physical stop with a range of movement of the mirror structure. Thus, drift in the position detection system can be compensated without the need for a separate reference signal source as used in conventional systems.
Abstract:
A fixed wavelength, external cavity semiconductor laser comprises a semiconductor laser gain medium and an intra-cavity filter having a filter function specifying a frequency of operation of the laser. This distinguishes it from distributed feedback Bragg reflector systems in which the wavelength of operation is dictated by the semiconductor Bragg grating, drive current, and temperature. A cavity length modulation system is further provided that modulates an optical length of the cavity to change the spectral locations of longitudinal modes of the cavity relative to the filter function. One important advantage of the present invention is that it can be deployed without a thermoelectric (TE) cooler. Specifically, the intra-cavity filter material in combination with the cavity length controller, allow a mode of cavity to be located at the filter function. Thus, the temperature of the module can fluctuate with ambient temperature or other operating parameters, but the wavelength is held stable with single longitudinal mode operation of the module being guaranteed.
Abstract:
A tilt mirror Fabry-Perot tunable filter comprises a frame and a first mirror structure. A tether system connects the first mirror structure to this frame. The tether system is designed to enable the tilting of the first mirror structure relative to an optical axis, in addition to translation of the first mirror structure along the optical axis. A second mirror structure is further provided to define an optical cavity in combination with the first mirror structure. At least two drive electrodes are provided for electrostatically tilting and translating the first mirror structure. The resulting MEMS Fabry-Perot tunable filter is capable for hitless tuning. It can be tuned to between bands directly, i.e., without dropping intervening bands.
Abstract:
An optical system assembly technique utilizes a templating system for locating optical components 200 on optical benches 150. Specifically, the template system comprises a template substrate 102 that is placed over the optical bench. The substrate 102 has at least one alignment slot 104 that is formed through the substrate. This alignment slot 104 has an alignment feature 120, against which an optical component 200 is registered. In order to improve the accuracy of the alignment of the optical component on the optical bench, the slot 104 has a reentrant, such as a smooth or step, sidewall 106 extending from the alignment feature 120 into the template substrate 102. This way, there is a single point or near single point of contact between the optical component 200 and the template 102, to thereby improve the placement precision for the optical component on the optical bench 150.
Abstract:
A micro-optical component comprises an optical element for interacting with an optical beam and a mounting structure for attaching the optical element to an optical bench. This optical element is solid phase welded to the mounting structure. Solid phase welding has advantages in that it can be performed at lower temperatures than most soldering, even some eutectic soldering. Solid-phase welding, however, is much more robust during subsequent temperature cycling. This is especially important when the optical components undergo subsequent high temperature cycling.
Abstract:
The present invention concerns the use of hybrid metal-dielectric optical coatings as the end reflectors of laser cavities and/or in the mirror structures used in other optical resonators, such as Fabry-Perot tunable filters, along with the use of such Fabry-Perot tunable filters in wavelength swept sources such as lasers. Hybrid metal-dielectric optical coatings have reflectivity spectra that can be broader than pure dielectric coatings, offer optical reflectivities higher than metal, as high as pure dielectric coatings, eliminate mirror transmission that can cause parasitic light reflections, and use fewer layers and thus have lower mass and higher mechanical resonant frequency for movable mirror applications An important characteristic of these coatings concerns the non-reflected light. Pure dielectric coatings offer high reflectivity, while the non-reflected portion of the light is transmitted by the coating to the substrate, for example. When metal is added to the optical coating, the non-reflected portion of the light is absorbed by the metal and is not transmitted to the substrate or outside the cavity. Hybrid metal-dielectric coatings have broader and more uniform spectral reflection. Tunable lasers with performance enhanced by the hybrid metal-dielectric coatings can be used in optical coherence tomography and spectroscopic analysis applications.
Abstract:
An optical coherence tomography system utilizes an optical swept laser that has cavity length compensator that changes an optical length of the laser cavity for different optical frequencies to increase the length of the laser cavity for lower optical frequencies. Specifically, a spectral separation between longitudinal cavity modes of the laser cavity is shortened or alternatively lengthened as a passband of a cavity tuning element sweeps through a scanband of the swept optical signal. In some examples, the compensator is implemented as two gratings. In others, it is implemented as a chirped grating device.
Abstract:
An optical coherence analysis system uses a laser swept source that is constrained to operate in a stable mode locked condition by modulating a drive current to the semiconductor optical amplifier as function of wavelength or synchronously with the drive voltage of the laser's tunable element based on stability map for the laser.