Abstract:
The invention relates to methods, reagents and devices for detection and characterization of nucleic acids, cells, and other biological samples. Assay method are provided in which a sample is partitioned into sub-samples, and analysis of the contents of the sub-samples carried out. The invention also provides microfluidic devices for conducting the assay. The invention also provides an analysis method using a universal primers and probes for amplification and detection.
Abstract:
An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
Abstract:
Methods for detecting chromosomal aneuploidy of a specified chromosome or chromosome region are provided. Also provided are methods for genetic analysis of heterogeneously sized chromosomal DNA fragments. The methods are useful for non-invasive prenatal diagnosis and other genetic analyses.
Abstract:
The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
Abstract:
New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
Abstract:
A method for processing an image of a micro fluidic device. The method includes receiving a first image of a micro fluidic device. The first image corresponds to a first state. Additionally, the method includes receiving a second image of the micro fluidic device. The second image corresponds to a second state. Moreover, the method includes transforming the first image and the second image into a third coordinate space (520). Also, the method includes obtaining a third image based on at least information associated (540) with the transformed first image and the transformed second image, and processing the third image to obtain information (550) associated with the first state and the second state.
Abstract:
New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device (4200). The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers (4202a, 4202b), thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
The present invention provides microfluidic devices, systems and methods for using the same, which facilitate the introduction of fluid to and from a microfluidic channel located within the microfluidic devices.
Abstract:
This invention provides a microfluidic sample injection apparatus (14, 100) for injecting a fluid sample into an analytical device (120) and a method for using the same. The microfluidic sample injection apparatus (14, 100) comprises a microfluidic device (100) and an integrated sample injection capillary (14) which is in fluid communication with a fluid flow channel of the microfluidic device (100).