Abstract:
Described herein are cell-based analytic methods, including a method of incorporating nucleic acid sequences into reaction products from a cell population, wherein the nucleic acid sequences are incorporated into the reaction products of each cell individually or in small groups of cells individually. Also described herein is a matrix-type microfluidic device that permits at least two reagents to be delivered separately to each cell or group of cells, as well as primer combinations useful in the method and device.
Abstract:
This disclosure provides a method of forming tagged nucleic acid sequences. A target polynucleotide is immobilized on a solid support; a recognition-oligonucleotide is hybridized thereto; the recognition-oligonucleotide-target polynucleotide hybrid is cleaved; and an adapter nucleic acid is ligated to the cleaved target polynucleotide, thereby forming a tagged nucleic acid sequence. Also provided is a method of forming a tagged single stranded cDNA; a method of forming a plurality of tagged heterogeneous nucleic acid sequences; a library of recognition-oligonucleotides; and methods for amplifying a cDNA sequence immobilized on a solid support. These methods and products can be used alone or in combination for integrated single cell sequencing, and can be adapted for use in a microfluidic apparatus or device.
Abstract:
Methods for cell analysis are provided, comprising cell capturing, characterization, transport, and culture. In an exemplary method individual cells (and/or cellular units) are flowed into a microfluidic channel, the channel is partitioned into a plurality of contiguous segments, capturing at least one cell in at least one segment, A characteristic of one or more captured cells is determined and the cell(s) and combinations of cells are transported to specified cell holding chamber(s) based on the determined characteristic(s). Also provided are devices and systems for cell analysis.
Abstract:
In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out "in parallel," i.e., essentially simultaneously in the separate reaction volumes.
Abstract:
A microfluidic device includes an input source characterized by a source pressure and an input channel in fluid communication with the input source. The microfluidic device also includes an output channel and a valve having an open state and a closed state. The valve is disposed between the input channel and the output channel and is characterized by a static pressure. The microfluidic device further includes a control channel coupled to the valve and characterized by a control pressure. In the closed state, the control pressure is greater than atmospheric pressure.
Abstract:
The present invention provides methods for selectively enriching a biological sample for short nucleic acids, such as fetal DNA in a maternal sample or apoptic DNA in a biological sample from a cancer patient and for subsequently analyzing the short nucleic acids for genotype, mutation, and/or aneuploidy.
Abstract:
The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
Abstract:
Methods are provided for selective tagging of short nucleic acids comprising a short target nucleotide sequence over longer nucleic acids comprising the same target nucleotide sequence. The methods can involve performing one or two cycles of amplification of a sample comprising long nucleic acids and short nucleic acids, each comprising the same target nucleotide sequence with at least two target-specific primers or primer pairs under suitable annealing conditions, wherein the primer pairs comprise: an inner primer or primer pair that can amplify the target nucleotide sequence on long and short nucleic acids (wherein each inner primer comprises a 5' nucleotide tag; and an outer primer or primer pair that amplifies the target nucleotide sequence on long nucleic acids, but not on short nucleic acids); whereby the amplification after a second cycle produces at least one tagged target nucleotide sequence that comprises two nucleotide tags, one from each inner primer, with the target nucleotide sequence located between the nucleotide tags.
Abstract:
The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
Abstract:
Microfluidic devices are described that include a rigid base layer, and an elastomeric layer on the base layer. The elastomeric layer may include at least part of a fluid channel for transporting a liquid reagent, and a vent channel that accepts gas diffusing through the elastomeric layer from the flow channel and vents it out of the elastomeric layer. The devices may also include a mixing chamber fluidly connected to the fluid channel, and a control channel overlapping with a deflectable membrane that defines a portion of the flow channel, where the control channel may be operable to change a rate at which the liquid reagent flows through the fluid channel. The devices may further include a rigid plastic layer on the elastomeric layer.