Abstract:
The present disclosure enables high-volume cost effective production of three- dimensional thin film solar cell (3-D TFSC) substrates. First, the present disclosure discloses pyramid-like unit cell structure 16 and 50 which enable epitaxial growth through their open pyramidal structure. The present disclosure than gives four 3-D TFSC embodiments 70, 82, 100, and 110 which may combined as necessary. A basic 3-D TFSC having a substrate, emitter, oxidation on the emitter, front and back metal contacts allows simple processing. Other embodiments disclose a selective emitter, selective backside metal contact, and front-side SiN ARC layers. Several processing methods including process flows 150, 200, 250, 300, and 350 enable production of these 3-D TFSC. Further, the present disclosure enables higher throughput through the use of dual sided template 400. By processing the substrate in the template, the present disclosure increases yield and reduces processing steps.
Abstract:
The present disclosure relates to methods for selectively etching a porous semiconductor layer to separate a thin-film semiconductor substrate (TFSS) having planar or three-dimensional features from a corresponding semiconductor template. The method involves forming a conformal sacrificial porous semiconductor layer on a template. Next, a conformal thin film silicon substrate is formed on top of the porous silicon layer. The middle porous silicon layer is then selectively etched to separate the TFSS and semiconductor template. The disclosed advanced etching chemistries and etching methods achieve selective etching with minimal damage to the TFSS and template.
Abstract:
A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.
Abstract:
It is an object of this disclosure to provide high productivity, low cost-of-ownership manufacturing equipment for the high volume production of photovoltaic (PV) solar cell device architecture. It is a further object of this disclosure to reduce material processing steps and material cost compared to existing technologies by using gas-phase source silicon. The present disclosure teaches the fabrication of a sacrificial substrate base layer that is compatible with a gas-phase substrate growth process. Porous silicon is used as the sacrificial layer in the present disclosure. Further, the present disclosure provides equipment to produce a sacrificial porous silicon PV cell-substrate base layer.
Abstract:
Methods here disclosed provide for selectively coating the top surfaces or ridges of a 3-D substrate while avoiding liquid coating material wicking into micro cavities on 3-D substrates. The substrate includes holes formed in a three-dimensional substrate by forming a sacrificial layer on a template. The template includes a template substrate with posts and trenches between the posts. The steps include subsequently depositing a semiconductor layer and selectively etching the sacrificial layer. Then, the steps include releasing the semiconductor layer from the template and coating the 3-D substrate using a liquid transfer coating step for applying a liquid coating material to a surface of the 3-D substrate. The method may further include coating the 3-D substrate by selectively coating the top ridges or surfaces of the substrate. Additional features may include filling the micro cavities of the substrate with a filling material, removing the filling material to expose only the substrate surfaces to be coated, coating the substrate with a layer of liquid coating material, and removing said filling material from the micro cavities of the substrate.
Abstract:
Solar module structures 210 and 270 and methods for assembling solar module structures. The solar module structures 210 and 270 comprise three-dimensional thin-film solar cells 110 arranged in solar module structures 210 and 270. The three- dimensional thin-film solar cell comprises a three-dimensional thin-film solar cell substrate (124 and 122, respectively) with emitter junction regions 1352 and doped base regions 1360. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The 3-D TFSC substrate comprises a plurality of single-aperture or dual- aperture unit cells. The solar module structures 270 using three-dimensional thin-film solar cells comprising three- dimensional thin-film solar cell substrates with a plurality of dual-aperture unit cells may be used in solar glass applications. The solar module structures 210 using three- dimensional thin-film solar cells comprising three-dimensional thin-film solar cell substrates with a plurality of single- aperture unit cells may be used in building facade and rooftop installation applications as well as for centralized solar electricity generation.
Abstract:
A back contact solar cell is described which includes a semiconductor light absorbing layer; a first-level metal layer (Ml), the Ml metal layer on a back side of the light absorbing layer, the back side being opposite from a front side of the light absorbing layer designed to receive incident light; an electrically insulating backplane sheet backside of said solar cell with the Ml layer, the backplane sheet comprising a plurality of via holes that expose portions of the Ml layer beneath the backplane sheet; and an M2 layer in contact with the backplane sheet, the M2 layer made of a sheet of pre-fabricated metal foil material comprising a thickness of between 5-250 μm, the M2 layer electrically connected to the Ml layer through the via holes in the backplane sheet.
Abstract:
According to one aspect of the disclosed subject matter, a method for forming self aligned contacts for monolithically isled back contact back junction solar cells is provided.
Abstract:
Passivated contact structures and fabrication methods for back contact back junction solar cells are provided. According to one example embodiment, a back contact back junction photovoltaic solar cell is described that has a semiconductor light absorbing layer having a front side and a backside having base regions and emitter regions. An amorphous silicon passivating layer is positioned on the base regions. A first level base and emitter metallization contacts the emitter regions and the amorphous silicon passivating layer on the base regions. An electrically insulating backplane is positioned on the first level base and emitter metallization. A second level metallization contacts the first level base and emitter metallization through conductive vias in the electrically insulating backplane.
Abstract:
The laser patterning methods utilizing a laser absorbent hard mask in combination with wet etching to form patterned solar cell doped regions which may further improve cell efficiency by completely avoiding laser ablation of an underlying semiconductor substrate associated with ablation of an overlying transparent passivation layer.