무기물 발광 다이오드 및 그의 제조방법
    41.
    发明授权
    무기물 발광 다이오드 및 그의 제조방법 有权
    无机电致发光二极管及其制备方法

    公开(公告)号:KR101304635B1

    公开(公告)日:2013-09-05

    申请号:KR1020060002189

    申请日:2006-01-09

    Abstract: 본 발명은 무기물 발광 다이오드 및 그의 제조방법에 관한 것으로, 보다 상세하게는 무기물인 반도체 나노 결정층을 포함하는 발광 다이오드에서 반도체 나노결정층의 상부에 형성되는 전자 수송층 또는 정공수송층은 비정질 무기물로 이루어지며, 반도체 결정층의 하부에 형성되는 정공 수송층 또는 전자 수송층은 무기물로 이루어진 무기물 발광 다이오드 및 그의 제조방법에 관한 것이다.
    본 발명에 의한 무기물 발광 다이오드의 제조방법은 반도체 결정층의 반도체 발광물질의 특성을 유지할 수 있는 방법으로 무기물 발광 다이오드를 제조할 수 있으며, 안정하게 구동되고, 발광효율이 높은 무기물 발광 다이오드를 제공할 수 있다.
    무기물 발광 다이오드, 비정질 무기 전자수송층, 반도체 결정층

    가변 초점 렌즈
    42.
    发明公开
    가변 초점 렌즈 审中-实审
    VARIFOCAL镜头

    公开(公告)号:KR1020130091202A

    公开(公告)日:2013-08-16

    申请号:KR1020120012536

    申请日:2012-02-07

    Abstract: PURPOSE: A varifocal lens is provided to propose a flat electrode shape capable of forming various shapes of lens surfaces within a liquid crystal layer and to precisely adjust the shape of a lens surface by introducing a resistive layer or a nano structure. CONSTITUTION: A varifocal lens (100) includes a first liquid crystal layer (140), a first electrode with a flat type (120), and non-uniform electric field forming unit. The first electrode is located under the first liquid crystal layer. The first non-uniform electric field forming unit generates a non-uniform electric field with the first electrode, and includes a second electrode with a flat type. The non-uniform electric field forming unit includes a first resistive layer (150) which is located between the second electrode and the first liquid crystal layer.

    Abstract translation: 目的:提供一种变焦透镜,以提出能够在液晶层内形成各种形状的透镜表面的平面电极形状,并且通过引入电阻层或纳米结构来精确地调节透镜表面的形状。 构造:变焦透镜(100)包括第一液晶层(140),平坦型(120)的第一电极和不均匀的电场形成单元。 第一电极位于第一液晶层的下方。 第一非均匀电场形成单元与第一电极产生不均匀的电场,并且包括平面型的第二电极。 非均匀电场形成单元包括位于第二电极和第一液晶层之间的第一电阻层(150)。

    양자점-매트릭스 박막 및 그의 제조방법
    43.
    发明公开
    양자점-매트릭스 박막 및 그의 제조방법 无效
    量子点及其生产方法

    公开(公告)号:KR1020130067137A

    公开(公告)日:2013-06-21

    申请号:KR1020110134001

    申请日:2011-12-13

    Abstract: PURPOSE: A quantum matrix thin film and a manufacturing method thereof are provided to control mechanical and chemical properties by controlling the amount of matrix precursors. CONSTITUTION: An inorganic matrix(30) embeds a plurality of quantum dots(10). An interfacial layer(20) is located between the quantum dot and the inorganic matrix. The interfacial layer surrounds the surface of the quantum dot. The quantum dot has a stacked structure. The inorganic matrix includes a metal chalcogenide compound.

    Abstract translation: 目的:提供量子矩阵薄膜及其制造方法,通过控制基体前体的量来控制机械和化学性质。 构成:无机基质(30)嵌入多个量子点(10)。 界面层(20)位于量子点和无机基质之间。 界面层围绕量子点的表面。 量子点具有层叠结构。 无机基质包括金属硫族化合物。

    그래핀과 폴리머의 복합체 및 그 제조방법
    44.
    发明公开
    그래핀과 폴리머의 복합체 및 그 제조방법 审中-实审
    石墨和聚合物的复合物及其制造方法

    公开(公告)号:KR1020130061514A

    公开(公告)日:2013-06-11

    申请号:KR1020110127863

    申请日:2011-12-01

    Abstract: PURPOSE: A manufacturing method of a composite of a polymer and a graphene is provided to obtain the composite with a 3-dimensional structure, having both high electric conductivity of the graphene and low thermal conductivity of the polymer. CONSTITUTION: A composite of a composite of a polymer and a graphene comprises at least one 3-dimensioanl polymer structure; and a graphene layer formed on the polymer structure. A manufacturing method of the composite comprises a step of preparing a substrate for growth(110), having an uneven surface; a step of synthesizing a graphene layer on the surface of the substrate; a step of forming a polymer structure on the graphene layer; and a step of removing the substrate.

    Abstract translation: 目的:提供聚合物和石墨烯的复合材料的制造方法,以获得具有石墨烯的高导电性和聚合物的低导热性的三维结构的复合体。 构成:聚合物和石墨烯的复合材料的复合材料包含至少一种3-维聚合物结构; 和形成在聚合物结构上的石墨烯层。 复合材料的制造方法包括制备具有不平坦表面的用于生长的基底(110)的步骤; 在所述基板的表面上合成石墨烯层的工序; 在石墨烯层上形成聚合物结构的步骤; 以及去除基板的步骤。

    나노구조물과 나노도트의 복합 구조체, 이를 포함하는 소자 및 이의 제조 방법
    45.
    发明公开
    나노구조물과 나노도트의 복합 구조체, 이를 포함하는 소자 및 이의 제조 방법 无效
    纳米结构纳米复合材料的复合结构及其制备方法及其制造方法

    公开(公告)号:KR1020120140478A

    公开(公告)日:2012-12-31

    申请号:KR1020110060234

    申请日:2011-06-21

    Abstract: PURPOSE: A composite structure of nanostructure and nanodots, a device including the same and a manufacturing method thereof are provided to control optical, thermal or electrical characteristics. CONSTITUTION: A composite structure of nanostructure and nanodots(100) comprises nanostructures(11) and multiple nano dots(30). The nanostructures comprise a core portion(10) and a shell portion(20). The multiple nanodots is formed at the coating part. The core portion comprises one selected from nanowire, nanorod and nanotube. The nanodots are prepared on the interface of the coating part and core unit, inside the coating part and the surface of the coating part. The nanodots comprise Ge or SiGe. The optical element comprises first and second electrodes, composite structure of nanostructures and nano taut, and a semiconductor layer. A manufacturing method of the composite structure comprises the following steps: forming nanostructures; and forming a plurality of nanodots on the nanostructures.

    Abstract translation: 目的:提供纳米结构和纳米点的复合结构,包括其的器件及其制造方法以控制光学,热学或电学特性。 构成:纳米结构和纳米点(100)的复合结构包括纳米结构(11)和多个纳米点(30)。 纳米结构包括芯部分(10)和壳部分(20)。 在涂层部分形成多个纳米点。 核心部分包括从纳米线,纳米棒和纳米管中选择的一个。 在涂层部分和芯单元的界面上,在涂层部分和涂层部分的表面内制备纳米点。 纳米点包括Ge或SiGe。 光学元件包括第一和第二电极,纳米结构和纳米结构的复合结构以及半导体层。 复合结构的制造方法包括以下步骤:形成纳米结构; 并在纳米结构上形成多个纳米点。

    그래핀-폴리머 층상 복합체 및 그의 제조방법
    46.
    发明公开
    그래핀-폴리머 층상 복합체 및 그의 제조방법 有权
    石墨聚合物层状复合材料及其制备方法

    公开(公告)号:KR1020120029864A

    公开(公告)日:2012-03-27

    申请号:KR1020100091963

    申请日:2010-09-17

    Abstract: PURPOSE: A graphene-polymer layered composite is provided to have low heat-conductivity and high electric conductivity, and to have flexibility, profitability, processability, etc of polymer material. CONSTITUTION: A graphene-polymer layered composite comprises two or more polymer layers, and one or more graphene layers formed between the polymer layers. The thickness of composite is 1nm - 1micron. The graphene layer additionally comprises nanostructure. A manufacturing method of the graphene-polymer layered composite comprises: a step of forming a first graphene layer by locating graphene sheet on a first polymer layer, and a step of forming a second polymer layer by locating a polymer sheet on the first graphene layer.

    Abstract translation: 目的:提供石墨烯 - 聚合物层状复合材料,具有低导热性和高导电性,并且具有聚合物材料的灵活性,获利性,加工性等。 构成:石墨烯 - 聚合物层状复合材料包含两个或更多个聚合物层,以及形成在聚合物层之间的一个或多个石墨烯层。 复合材料的厚度为1nm〜1微米。 石墨烯层还包括纳米结构。 石墨烯 - 聚合物层状复合体的制造方法包括:通过将石墨烯片定位在第一聚合物层上而形成第一石墨烯层的步骤,以及通过将聚合物片定位在第一石墨烯层上而形成第二聚合物层的步骤。

    요철 구조를 지닌 코어-쉘 나노 와이어 및 이를 이용한 열전 소자
    47.
    发明公开
    요철 구조를 지닌 코어-쉘 나노 와이어 및 이를 이용한 열전 소자 无效
    使用不同结构和热电器件的核心纳米管

    公开(公告)号:KR1020110064702A

    公开(公告)日:2011-06-15

    申请号:KR1020090121409

    申请日:2009-12-08

    CPC classification number: H01L35/32 B82Y10/00 H01L29/0665 H01L35/26

    Abstract: PURPOSE: A core-shell nanowire, and a thermoelectric device using thereof are provided to increase the surface area of the nanowire by installing a convex-concave structure on the surface of a shell domain on the nanowire. CONSTITUTION: A core-shell nanowire including a convex-concave structure comprises a core domain(10) and a shell domain(12). The convex-concave structure(14) is formed on the shell domain. The convex-concave structure is cavities formed on the surface or the inside of the shell domain, or protrusions projected from the surface of the shell domain.

    Abstract translation: 目的:提供核 - 壳纳米线及其使用的热电装置,以通过在纳米线上的壳结构域的表面上安装凸凹结构来增加纳米线的表面积。 构成:包括凸凹结构的核 - 壳纳米线包括核心域(10)和壳域(12)。 凸形结构(14)形成在壳域上。 凸凹结构是在壳结构域的表面或内部形成的腔或从壳结构域的表面突出的突起。

    그래핀과 나노구조체의 복합 구조체 및 그 제조방법
    48.
    发明公开
    그래핀과 나노구조체의 복합 구조체 및 그 제조방법 无效
    石墨和纳米结构的复合结构及其制造方法

    公开(公告)号:KR1020110057989A

    公开(公告)日:2011-06-01

    申请号:KR1020090114637

    申请日:2009-11-25

    Abstract: PURPOSE: A composite structure of graphene and nanostructures, and a producing method thereof are provided to obtain a three dimensional shape of the composite structure by forming the nanostructures on the graphene with the high conductivity. CONSTITUTION: A composite structure(100) of graphene and nanostructures includes the graphene(120), and nanostructures(110) formed on the graphene with a one-dimensional shape. The nanostructures are electrically connected to the graphene. The nanostructures include a nanowire, a nanotube, or a nanorod. A producing method of the composite structure comprises a step of preparing a substrate, a step of forming the graphene on the substrate, and a step of growing the nanostructures on the graphene.

    Abstract translation: 目的:提供石墨烯和纳米结构的复合结构及其制备方法,以通过在具有高导电性的石墨烯上形成纳米结构来获得复合结构的三维形状。 构成:石墨烯和纳米结构的复合结构(100)包括石墨烯(120)和形成在具有一维形状的石墨烯上的纳米结构(110)。 纳米结构电连接到石墨烯。 纳米结构包括纳米线,纳米管或纳米棒。 复合结构的制造方法包括准备基板的步骤,在基板上形成石墨烯的步骤以及在石墨烯上生长纳米结构的步骤。

    다중 양자점층을 가지는 양자점 발광소자
    50.
    发明公开
    다중 양자점층을 가지는 양자점 발광소자 有权
    具有量子多层的量子点光发射装置

    公开(公告)号:KR1020100095875A

    公开(公告)日:2010-09-01

    申请号:KR1020090014894

    申请日:2009-02-23

    Abstract: PURPOSE: A quantum dot light emitting device is provided to reduce the difference of an energy band level between a quantum dot light emitting layer and a hole transport layer by including a quantum dot light emitting and containing layer. CONSTITUTION: A first and a second electrode(14,22) are formed on a substrate(12). A first and a second charge transport layer(15,20) are formed between the first electrode and the second electrode. A quantum dot light emitting layer(18) is formed between the first charge transport layer and the second charge transport layer. The energy band level of at least one quantum dot containing layer(17) is different from the energy band level of the quantum dot light emitting layer. At least one among the first and the second charge transport layer is a hole transport layer. The other one among the first and the second charge transport layer is an electron transport layer.

    Abstract translation: 目的:提供量子点发光装置,通过包括量子点发光和含有层来减少量子点发光层和空穴传输层之间的能带差的差异。 构成:第一和第二电极(14,22)形成在衬底(12)上。 在第一电极和第二电极之间形成第一和第二电荷传输层(15,20)。 在第一电荷输送层和第二电荷输送层之间形成量子点发光层(18)。 至少一个量子点含有层(17)的能带水平与量子点发光层的能带水平不同。 第一和第二电荷输送层中的至少一个是空穴传输层。 第一和第二电荷输送层中的另一个是电子传输层。

Patent Agency Ranking