Abstract:
PURPOSE: A gel-type polymer electrolyte, a complex electrode using the electrolyte, a lithium secondary battery using the electrode and their preparation method are provided, to improve the energy density, cycle lifetime, characteristics at a low and high temperature, a charge/discharge efficiency and stability of a secondary battery. CONSTITUTION: The gel-type polymer electrolyte comprises 5-90 wt% of a function-I polymer selected from polyacrylonitrile-based polymer and poly(methyl methacrylate) (PMMA)-based polymer; 5-80 wt% of a function-II polymer selected from a poly(vinylidene-fluoride) (PVdF)-based polymer and a PMMA-based polymer; and 5-80 wt% of a function-III polymer selected from a PVC-based polymer and a PVdF-based polymer. Optionally the gel-type polymer electrolyte comprises further a plasticizer or an organic solvent; and/or a filler. The complex electrode comprises the gel-type polymer electrolyte which is contained in the pore of an anode or cathode, and a layer made of the gel-type polymer electrolyte with the thickness of 1-20 micrometers formed on the surface of an anode or cathode. The lithium secondary battery is provided with a laminated body which comprises a cathode, an isolation membrane, an anode, an isolation membrane and a cathode, wherein the anode and the cathode are made of the complex electrode and the isolation membrane is made of polyethylene, polypropylene or nonwoven; a terminal connected with the anodes and cathodes; and a case surrounding the laminated body.
Abstract:
PURPOSE: A metal oxide electrode coated with porous metal, metal oxide or carbon thin film, its preparation method and a lithium secondary battery using the electrode are provided, to improve the capacity of a battery, the efficiency of charging/discharging and the lifetime. CONSTITUTION: The metal oxide electrode is such that it is coated with a thin film comprising porous metal, porous metal oxide or porous carbon by the thickness of several Angstrom to several micrometers. The method comprises the steps of placing a metal oxide electrode roll in a vacuum chamber; evaporating metal, metal oxide or carbon to coat the electrode with porous metal, porous metal oxide or porous carbon with unwinding the electrode from the roll at regular speed and winding it to another roll; and placing the electrode at a specific temperature under vacuum to stabilize the electrode. Preferably the porous metal is selected from the group consisting of Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Pt. Ir, Ru or their alloys; and the metal oxide electrode comprises an active material which is prepared by using LiCoO2, LiMn2O4, LiNiO2, V6O13 or V2O5.
Abstract translation:目的:提供涂覆有多孔金属,金属氧化物或碳薄膜的金属氧化物电极,其制备方法和使用该电极的锂二次电池,以提高电池的容量,充电/放电的效率和使用寿命。 构成:金属氧化物电极使其涂覆有包括多孔金属,多孔金属氧化物或多孔碳的薄膜,厚度为几埃至几微米。 该方法包括将金属氧化物电极辊放置在真空室中的步骤; 蒸发金属,金属氧化物或碳,以多孔金属,多孔金属氧化物或多孔碳涂覆电极,以规则的速度将电极从辊中退绕并将其卷绕到另一个辊上; 并将电极置于特定温度的真空下以使电极稳定。 优选多孔金属选自Li,Al,Sn,Bi,Si,Sb,Ni,Cu,Ti,V,Cr,Mn,Fe,Co,Zn,Mo,W,Ag,Au,Pt 。 Ir,Ru或它们的合金; 并且金属氧化物电极包含通过使用LiCoO 2,LiMn 2 O 4,LiNiO 2,V 6 O 13或V 2 O 5制备的活性材料。
Abstract:
PURPOSE: Provided are method for completely treating carbon electrode with lithium which is used for enhancing a capacity and a cycle life of the carbon electrode, and a method for producing lithium secondary cell using the same. CONSTITUTION: The method for completely treating carbon electrode with lithium comprises the steps of (i) treating a carbon electrode with lithium by varying a temperature and ionic conductivity under the state which carbon electrode and lithium metal are connected or contacted with each other by resistance, (ii) stabilizing the treated carbon electrode at the predetermined temperature for the predetermined period to form a stable film on the surface of carbon electrode, thereby enhancing a reversibility in charging/discharging.
Abstract:
PURPOSE: A method for manufacturing a multicomponent system solid high molecule electrolyte is provided to contain an excellent adhesion and a mechanical strength for easily manufacturing a battery. CONSTITUTION: A multicomponent system solid high molecule electrolyte comprises: more than one compounds selected from a group composed of 0¯80 % of a poly-acrylonitrile(PAN) system compound, 0¯80 % of a PVC system compound, and 0¯80 % of a poly-vinylidene fluoride(PVdF) system compound while a whole weight of the compound is 100 wt%; and 5¯90 wt% of a poly-methyl-methacrylate(PMMA) system compound.
Abstract:
PURPOSE: The production method of two-component system solid high molecule electrolyte is provided to easily make a battery having a superior adhesive strength and mechanical strength and battery efficiency. CONSTITUTION: The production method of two-component system solid high molecule electrolyte comprises the steps of: mixing PAN/PVC class compound mixed PAN compound and PVC compound in the ratio of 10:1¯1:5 wt% with a plasticizer and an organic solvent; high molecule blending to form a matrix of a solid high molecule electrolyte; casting and drying to get a solid high molecule membrane; injecting the organic solvent electrolyte melted lithium.
Abstract:
본 발명은 복합 고체고분자 전해질 및 리튬고분자 전지의 제조방법에 있어서, PAN계 전해질인 경우 강도가 떨어지고, dry room에서 제조해야 하는 제조상의 어려움과, 또한 PVdF계 전해질은 접착력이 불량하여 전극 및 전지 제조시 가열 lamination과 추출공정을 필요로 하는 단점 및 고체고분자 제조시 가소제의 추출과정과 유기용매 전해질의 함침과정이 요구되어 제조공정이 까다로운 문제점을 해결하기 위한 것으로, 기지고분자로 PAN계와 PVdF계를 혼합한 것을 사용하여 SiO 2 , 가소제, 유기용매를 혼합하고, 가열하여 blending된 고체고분자 매트릭스를 형성시킨 후, 캐스팅하여 건조하고 유기용매 전해질을 주입하여 고체고분자 전해질을 제조하는 방법과, 상기의 고체고분자 전해질, 음·양극을 적층하고 유기용매 전해질을 주입하여 전지 성능이 우수한 리튬� ��분자 전지의 제조방법을 제공한다.
Abstract:
본 발명은 고체고분자 전해질 및 리튬고분자 전지의 제조방법에 있어서, PAN계 전해질의 기계적 안정성의 저하와, PVdF계 전해질의 접착력이 불량하여 전극 및 전지 제조시 가열 lamination과 추출공정을 필요로 하는 단점을 해결하기 위한 것으로, PAN계와 PVdF계를 blending하여 복합 고분자 전해질을 제조하여 PAN계 전해질의 우수한 접착력과 이온전도도를 그대로 유지하고 PVdF계 하이브리드형 전해질의 우수한 기계적 강도와 이온전도도를 유지함으로써 PAN계 전해질의 기계적 안정성을 향상시켰고, PVdF계 하이브리드형 전해질 제조시 가소제의 추출과정과 유기용매 전해질의 주입공정을 제거하였으며, 또한 PVdF 전해질의 접착력 문제를 해결하는 리튬고분자 전지용 고체고분자 전해질의 제조방법과, 고체고분자 전해질을 사용하여 복합 음·양극을 제조하고 � �들을 적층하여 접착력과 기계적 안정성이 우수하고 전지성능이 우수한 리튬고분자 전지의 제조방법을 제공하였다.
Abstract:
The polymerized phosphate salt anticorrosive is produced by mixing 60-90 wt.% NaH2PO4, 0-10 wt.% Na2H2PO4, 0-20 wt.% zinc carbonate (ZnCO3), 1-5 wt.% calcium carbonate (CaCO3), 1-5 wt.% aluminium oxide (Al2O3) and 0-5 wt.% silica, drying the mixture, heating it at 800-1000 deg.C and 10 deg.C/min heating rate, and polymerizing it at 850 deg.C for 0.5-1 hr. The anticorrosive has a good anticorrosion effect, and is useful for drinking and industrial water systems.
Abstract translation:聚合的磷酸盐防腐剂通过混合60-90重量%的NaH 2 PO 4,0-10重量%的Na 2 H 2 PO 4,0-20重量%的碳酸锌(ZnCO 3),1-5重量%的碳酸钙(CaCO 3),1 -5重量%的氧化铝(Al 2 O 3)和0-5重量%的二氧化硅,干燥混合物,加热至800-1000℃和10℃/分钟加热速率,并在850℃聚合 0.5-1小时。 防腐蚀具有良好的防腐效果,适用于饮用水和工业用水系统。
Abstract:
A rustproofing agent containing polymerized phosphate is manufactured by (A) mixing raw materials in a proper ration, (B) drying and high-temperature polymerizing mixed raw materials in a S- type cylindrical polymerization reactor, (C) molding the polymerized mixture in the form of glass beads in a molder of which the temperature is kept at 150-300 deg.D, and (D) cooling the product to a constant temperature. The polymerization reactor, which is equipped with a distributor to uniformly distribute melt product successively downwards, consists of four heating zones of temperatures of 700-800 deg.C, 800-850 deg.C, 800-900 deg.C, and 800-1000 deg.C.