Abstract:
PURPOSE: An organic-inorganic composite oxide for the cathode of a lithium secondary battery and its preparation method are provided, which is improved in the charging-discharging effect by intercalating different polymers into V2O5 xerogel. CONSTITUTION: The organic-inorganic composite oxide comprises V2O5 xerogel where poly(2,5-dimercapto-1,3,4-thiadiazole) and polyaniline are intercalated. Preferably the ratio of V2O5 xerogel : poly(2,5-dimercapto-1,3,4-thiadiazole) : polyaniline is 1 : 0.2-1 : 0.2-2 by mol. The method comprises the steps of preparing powdered V2O5 xerogel; dissolving the powdered V2O5 xerogel into distilled water to obtain a V2O5 aqueous solution; dissolving 2,5-dimercapto-1,3,4-thiadiazole monomer into an organic solvent to obtain a 2,5-dimercapto-1,3,4-thiadiazole solution; adding the V2O5 aqueous solution to the 2,5-dimercapto-1,3,4-thiadiazole solution slowly; adding aniline to the obtained one; stirring the obtained one at a room temperature for 24 hours, filtering it under reduced pressure and washing it; and drying the product at a room temperature or 80 deg.C.
Abstract:
PURPOSE: A smart card embedding a super capacitor is provided to enable a rapid charge or an instant discharge at a remote place as well as by a wired connection by using the super capacitor for supplying electric power to a signal process circuit so that it can make only the card itself perform a data process. CONSTITUTION: The smart card comprises a super capacitor(SC), an antenna coil(A), a low pass filter(F), external connectors(11,12), a diode and an IC element(IC). Electromagnetic waves are received by the antenna coil(A), rectified in the diode, transferred to the low pass filter(F), filtered in the low pass filter(F), and converted to DC voltage signals. The DC voltage signals charge the super capacitor(SC). The super capacitor(SC) can be charged also via the external connectors(11,12). The super capacitor(SC) supplies necessary power to the IC elements for processing data or generating signals to external devices. The super capacitor has a specific capacity larger than a conventional capacitor by 100 to 1000, and a power density larger than the latest secondary battery by 10 more so that it can rapidly store the electric power.
Abstract:
본 발명은 한정된 용적에서 전지의 용량을 증가시키고 편극화와 단락의 위험을 줄임으로써 종래의 전지보다 우수한 특성을 지닌 리튬 폴리머 2차전지 멀티셀과, 그것의 개선된 제조방법에 관한 것이다. 본 발명에 따른, 리튬 폴리머 2차전지 멀티셀은, (음전극/고분자 전해막/양전극) 또는 (양전극/고분자 전해막/음전극)으로 구성된 복수개의 단위셀이 직렬로 적충되거나 또는 병렬로 연결되며, 상기한 양전극 및 음전극을 구성하는 집전체가 동일한 전극끼리 한 방향으로 모이도록 하여 일체로 구성된 것을 특징으로 한다. 또한, 본 발명에 따른, 리튬 폴리머 2차전지 멀티셀의 제조방법은, 음극 집전체(1,1')상에 음전극 물질(2)의 슬러리를 도포하고 건조시켜 음전극을 형성하는 단계와, 양극 집전체(4,4') 상에 양전극 물질(5)의 슬러리를 도포하고 건조시켜 양전극을 형성하는 단계와, 고분자 전해액을 박판 상에 캐스팅하고 박판으로부터 분리시켜 고분자 전해막(3)을 형성하는 단계와, 상기 단계에서 얻어진 양전극, 음전극 및 고분자 전해막(3)을 (음전극/고분자 전해막/양전극) 또는 (양전극/고분자 전해막/음전극)의 순서로 배열하고 접합하여 단위셀을 제조하는 단계와, 상기한 복수개의 단위셀을 직렬로 적층하거나 또는 병렬로 연결하고, 상기한 양전극 및 음전극을 구성하는 집전체(1,1' 또는 4,4')가 동일한 전극끼리 한 방향으로 모이도록 하여 인접한 전극을 일체로 구성� �는 단계를 포함한다.
Abstract:
일반적으로 리튬 2차전지는 양극, 전해질, 음극으로 구성된다. 종래의 4V급 양극물질로 알려진 리튬-망간 산화물은 가격이 저렴하고 실제 용량이 110mAh/g 정도로 비교적 높으나, 화학량론적인 화합물의 제조가 어렵고, 사이클의 반복에 따른 결정구조 변형에 의해 용량 감소 등의 전극특성이 열화되는 단점이 있다. 본 발명에서는 상기의 단점을 개선하기 위해 망간 대신 철을 치환한 리튬-철-망간화합물(LiFe x Mn 2-x O 4 )을 제안한다. 상기의 리튬-철-망간 화합물은 리튬-망간 화합물과 비슷하거나 큰 방전용량을 가지며 구조적으로도 안정하여 사이클 반복에 따른 용량 감소가 적을 뿐만 아니라 높은 전압영역(5V)에서의 용량도 높아 4V 이상의 고전압 전지에의 전극물질로서 적용이 가능하다.
Abstract:
A hybrid power supplying device for a sensor node and a hybrid power supplying method thereof are provided to supply power stably by using two or more energy sources instead of a single energy source. A hybrid power supplying device(200) for a sensor node includes a solar cell unit(210), a secondary battery unit(230), and a conversion circuit unit(220). The solar cell unit generates electrical energy by converting solar energy. The secondary battery unit stores the electrical energy generated in the solar cell unit. The conversion circuit unit converts the electrical energy into a predetermined type to store the electric energy to the secondary battery unit and supplies the sorted electrical energy to the sensor node.
Abstract:
A preparation method of manganese dioxide nano-particle is provided to obtain manganese dioxide nano-particle economically in a simple process for short time by oxidation-reduction reaction of separate aqueous solutions of manganese chloride and potassium permanganate. A preparation method of manganese dioxide nano-particle comprises steps of: preparing separate aqueous solution of MnCl2 and KMnO4(S10); adding KMnO4 aqueous solution to the MnCl2 aqueous solution under stirring(S20); stirring the mixture for about 1 hour(S30); filtering the mixture and drying the filtrate(S40); and analyzing the product precipitate(S50). In the oxidation-reduction reaction of the aqueous solutions, the manganese precursor optionally plays as an oxidant or as a reductant. The shape of the manganese dioxide nano-particle is controlled by the condition for synthesis in the aqueous solution or by the changes in the process for nucleus forming and for particle forming. Under the control of the precursor species and the synthesis condition, the manganese oxide optionally comprises potassium ion and sodium ion. Further, the nano-particle is gamma-MnO2 and has a diameter of 10 to 150 nm.
Abstract:
본 발명은 폴리올과 유기 폴리이소시아네이트를 포함하는 고분자 전해질 조성물, 이를 포함하는 염료감응 태양전지, 및 상기 염료감응 태양전지의 제조 방법을 개시한다. 개시된 고분자 전해질 조성물은 폴리올과 유기 폴리이소시아네이트가 화학적으로 가교되어 겔화되어 장기 보관성 및 실용성을 개선한다. 가교, 폴리올, 유기 폴리이소시아네이트, 고분자 전해질, 염료감응 태양전지
Abstract:
A power source device for sensor nodes of a USN(Ubiquitous Sensor Network) is provided to continuously store electricity generated from a solar battery in a secondary battery and to stably supply the low current electricity. A power source device for sensor nodes(400) of a USN includes a solar battery(100), a secondary battery(200), and an interface circuit(300). The solar battery(100) has a self-generation function. The secondary battery(200) stores electricity generated at the solar battery(100), and supplies the electricity to the sensor node(400) of the USN. The interface circuit(300) connects the solar battery and the secondary battery(200). The solar battery, the secondary battery, and the interface circuit are mounted on the sensor node.
Abstract:
Provided are an all-solid-state primary film battery, which is more lightweight and thinner than the conventional primary battery, has improved flexibility and high energy density, and is suitable for application to tags, and a manufacturing method thereof. The all-solid-state primary film battery(100) comprises: a first polymeric current collector film(10) consisting of a first polymeric film(12) and a first conductive layer(14); a first electrode layer(16) formed on the first conductive layer(14); a second polymeric current collector film(20) consisting of a second polymeric film(22) and a second conductive layer(24); a second electrode layer(26) formed on the second conductive layer(24); and a polymeric electrolyte layer(30) which is formed between the first electrode layer(16) and the second electrode layer(26) and includes aqueous electrolytic solution.
Abstract:
A compound of a polymer electrolyte, a dye-sensitized solar cell comprising the same, and a method for manufacturing a dye sensitized solar cell are provided to improve long-term stability by reducing leakage and volatility of a solvent. A compound of a polymer electrolyte of a dye-sensitized solar cell includes a non-volatile solvent, polyols, and organic polyisocyanate. The non-volatile solvent is ionic liquid or polyalkylene glycol dialkylether. The ionic liquid is melted at room temperature and includes anions selected from a group including quaternary ammonium salt, imidazolium salt, and pyridinium salt, and cations selected from a group including Br-, Cl-, BF4-, PF6-, SbF6-, CF3SO3, and (CF3SO2)2N-.