Abstract:
Optical films for redirecting light are described, and optical systems, such as display systems, incorporating such optical films are described. The optical film may include a first structured surface including a plurality of prismatic structures, and a second structured surface opposing the first structured surface and including a plurality of microstructures. An effective transmission of the optical film is not more than 1% less than a film with a comparable construction except for a smooth, non-structured second surface.
Abstract:
A display film includes a transparent polymeric substrate layer having a 0.2% offset yield stress greater than 110 MPa and a transparent aliphatic cross-linked polyurethane layer having a thickness of 100 micrometers or less disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 2% or less.
Abstract:
This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
Abstract:
Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. The hardcoat composition further comprises inorganic oxide nanoparticles such as silica that comprises a copolymer izable surface treatment and a non-copolymerizable silane surface treatment. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
Abstract translation:目前描述的是包含至少一种包含至少三个(甲基)丙烯酸酯基团和C 2 -C 4烷氧基重复单元的至少一种第一(甲基)丙烯酸酯单体的硬涂层组合物,其中该单体具有约220至375的(甲基)丙烯酸酯基团的分子量 g / mol和至少一种包含至少三个(甲基)丙烯酸酯基团的第(甲基)丙烯酸酯单体。 硬涂层组合物还包括无机氧化物纳米颗粒如二氧化硅,其包含可共聚的表面处理和不可共聚的硅烷表面处理。 还描述了诸如保护膜,显示器和包含这种固化的硬涂层组合物的触摸屏的制品。
Abstract:
Optical films, optical stacks including the optical films, and display systems including the optical films are described. The optical film includes a first major surface that may include a plurality of first microstructures that extend along a first direction. The optical film also includes a second major surface that is opposite to the first major surface and includes a plurality of second microstructures. The second major surface has an optical haze that is not greater than about 3% and an optical clarity that is not greater than about 85%.
Abstract:
Light redirecting film is disclosed. The light redirecting film includes a first major surface that includes a plurality of first microstructures that extend along a first direction. The light redirecting film also includes a second major surface that is opposite to the first major surface and includes a plurality of second microstructures. The second major surface has an optical haze that is not greater than about 3% and an optical clarity that is not greater than about 85%. The light redirecting film has an average effective transmission that is not less than about 1.75.