Abstract:
Disclosed is a single mode optical waveguide having a core refractive index profile defined by upper and lower boundary profiles on a chart of relative index percent versus radius. The relative refractive index as a function of radial dimensions of the core are selected to provide an optical waveguide fiber having properties suitable for a high performance telecommunication system operating in the wavelength window of about 1530 nm to 1625 nm. Refractive index profile designs encompassing the wavelength window 1250 nm to 1350 nm are also disclosed. The embodiments of the core waveguide have exceptionally low total dispersion slope and attenuation over these waveleng th windows.
Abstract:
The invention is directed to a single mode optical waveguide fiber profile that provides relatively large effective area while limiting macrobend loss. The large effective area results from configuring the core of the waveguide fiber to shift propagated light power away from the waveguide center. Macrobend loss, as measured by pin array or 20 mm mandrel testing, is maintained low by means of a power-limiting index depression surrounding the central core region of the waveguide. In addition, low attenuation is achieved and cut off wavelength is controlled to provide a telecommunications operating window in the wavelength range of about 1250 nm to 1700 nm.
Abstract:
Disclosed is a single mode optical waveguide having a segmented core of at least two segments. The relative refractive index, the index profile and the radial dimensions of the core segments are selected to provide an optical waveguide fiber having properties suitable for a high performance telecommunication system operating in the wavelength window of about 1530 nm to 1570 nm. Embodiments of the invention having two, three and four segments are described.
Abstract:
Improved optical waveguide fiber 1 comprise of a central core 10 region surrounded by an inner clad region 12. The second annular region 14 is doped with tantalum. The core 10 is doped with germanium. The first annular region 20 of the inner clad is undoped. The optical fiber 1 has a depressed, annular region 20 located between two adjacent regions of relatively high indexes of refraction. The index of refraction of both adjoining regions 10, 20 is greater than the central region 20.
Abstract:
The invention is directed to a single mode optical waveguide fiber profile (18, 20, 22, 24) that provides relatively large effective area while limiting macrobend loss. The large effective area results from configuring the core of the waveguide fiber to shift propagated light power away from the waveguide center. Macrobend loss, as measured by pin array or 20 mm mandrel testing, is maintained low by means of a power-limiting index depression (24) surrounding the central core region of the waveguide. In addition, low attenuation is achieved and cut off wavelength is controlled to provide a telecommunications operating window in the wavelength range of about 1250 nm to 1700 nm.
Abstract:
Disclosed is a single mode optical waveguide having a core refractive index profile defined by upper and lower boundary profiles on a chart of relative index percent versus radius. The relative refractive index as a function of radial dimensions of the core are selected to provide an optical waveguide fiber having properties suitable for a high performance telecommunication system operating in the wavelength window of about 1530 nm to 1625 nm. Refractive index profile designs encompassing the wavelength window 1250 nm to 1350 nm are also disclosed. The embodiments of the core waveguide have exceptionally low total dispersion slope and attenuation over these wavelength windows.
Abstract:
Improved optical waveguide fiber (1) comprised of a central core (10) region surrounded by inner clad region (12). The second annular region (14) is doped with tantalum. The core (10) is doped with germanium. The first annular region (20) located between two adjacent regions of relatively high indexes of refraction. The index of refraction of both adjoining regions (10, 20) is greater than the central region (20).