Abstract:
A method for providing an image of an internal region of a patient has been developed. The method reduces imaging artifacts by providing enhanced contrast between tissue and blood during imaging. The method comprises administering to a patient a contrast agent in combination with a renal vasodilator and performing ultrasound imaging of the region. Renal disease, including renal arterial stenosis, may be diagnosed using the method.
Abstract:
Novel contrast agents which may be used for diagnostic and therapeutic use. The compositions may comprise a lipid, a protein, polymer and/or surfactant, and a gas, in combination with a targeting ligand. In preferred embodiments, the targeting ligand targets coagula, including emboli and/or thrombi, particularly in patients suffering from an arrhythmic disorder. The contrast media can be used in conjunction with diagnostic imaging, such as ultrasound, as well as therapeutic applications, such as therapeutic ultrasound.
Abstract:
A novel method of magnetic resonance focused surgical ultrasound by administering to a patient a magnetic resonance imaging (MRI) contrast medium comprising gas filled vesicles, then scanning the patient with MRI techniques, and then applying ultrasound to effect surgery. These methods may also use an MRI contrast medium comprising gaseous precursor filled vesicles which undergo a phase transition from a liquid to gas in vivo after administration. Additionally, the MRI contrast medium may comprise a therapeutic compound.
Abstract:
Stabilized compositions comprising, in combination with a gas, a fluorinated amphiphilic compound. The compositions are particularly suitable for use in diagnostic applications, including ultrasound. The compositions can take the form of vesicular compositions, such as micelles and liposomes.
Abstract:
Compositions comprising, in an aqueous carrier, a lipid and a material which is capable of stabilizing the composition. The stabilizing material is associated non-covalently with said lipid and is present in an amount sufficient to coat the lipid but insufficient to raise the viscosity of the composition. The compositions are particularly suitable for use in diagnostic applications, including ultrasound. The compositions can take the form of vesicular compositions, such as micelles and liposomes.