Abstract:
Generally, this disclosure provides apparatus and systems for coupling waveguides to a server package with a modular connector system, as well as methods for fabricating such a connector system. Such a system may be formed with connecting waveguides that turn a desired amount, which in turn may allow a server package to send a signal through a waveguide bundle in any given direction without bending waveguides.
Abstract:
An apparatus comprises a waveguide including: an elongate waveguide core including a dielectric material, wherein the waveguide core includes at least one space arranged lengthwise along the waveguide core that is void of the dielectric material; and a conductive layer arranged around the waveguide core.
Abstract:
Embodiments of the invention include a communication module that includes a die having a transceiver and a phase shifter die that is coupled to the die. The phase shifter includes a power combiner and splitter. The communication module also includes a substrate that is coupled to the phase shifter die. The substrate includes an antenna unit with steerable beam forming capability for transmitting and receiving communications.
Abstract:
Embodiments of the invention include a waveguide structure that includes a lower member, at least one sidewall member coupled to the lower member, and an upper member. The lower member, the at least one sidewall member, and the upper member include at least one conductive layer to form a cavity in a substrate for allowing communications between devices that are coupled or attached to the substrate.
Abstract:
Wireless interconnects are shown on flexible cables for communication between computing platforms. One example has an integrated circuit chip, a package substrate to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components, a cable on the package substrate coupled to the integrated circuit chip at one end, a radio chip on the cable coupled to the cable at the other end, the radio chip to modulate data over a carrier and to transmit the modulated data, and a waveguide transition coupled to a dielectric waveguide to receive the transmitted modulated data from the radio and to couple it into the waveguide, the waveguide to carry the modulated data to an external component.
Abstract:
Microelectronic package communication is described using radio interfaces connected through wiring. One example includes a system board, an integrated circuit chip, and a package substrate mounted to the system board to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components. A radio on the package substrate is coupled to the integrated circuit chip to modulate the data onto a carrier and to transmit the modulated data. A radio on the system board receives the transmitted modulated data and demodulates the received data, and a cable interface is coupled to the system board radio to couple the received demodulated data to a cable.
Abstract:
Communication is described between integrated circuit packages using a millimeter-wave wireless radio fabric. In one example a first package has a radio transceiver to communicate with a radio transceiver of a second package. The second package has a radio transceiver to communicate with the radio transceiver of the first package. A switch communicates with the first package and the second package to establish a connection through the respective radio transceivers between the first package and the second package. A system board carries the first package, the second package, and the switch.
Abstract:
A microelectronic package is described with a wireless interconnect for chip-to-chip communication. In one example, the package includes an integrated circuit chip, a package substrate to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components, a radio coupled to the integrated circuit chip to receive data from the integrated circuit chip and modulate the data onto a radio frequency carrier, and an antenna on the package substrate coupled to the radio to send the modulated data over the carrier to an external device.
Abstract:
Embodiments of the present disclosure describe a multi-layer package with antenna and associated techniques and configurations. In one embodiment, an integrated circuit (IC) package assembly includes a first layer having a first side and a second side disposed opposite to the first side a second layer coupled with the first side of the first layer, one or more antenna elements coupled with the second layer and a third layer coupled with the second side of the first layer, wherein the first layer is a reinforcement layer having a tensile modulus that is greater than a tensile modulus of the second layer and the third layer. Other embodiments may be described and/or claimed.
Abstract:
A voltage regulator for one or more dies in a multi-stack integrated circuit includes an inductor located on a die, a voltage controller that is electrically coupled to the inductor and is also located on the die, and a capacitor that is electrically coupled to the inductor and the voltage controller and is also located on the die. The inductor defines an interior space and the voltage controller and the capacitor are located within the interior space of the inductor. The inductor can be a lateral inductor or a through layer via inductor. The multi-stack integrated circuit may have multiple dies. A voltage controller may be electrically coupled to each of the dies, although it may be located on only one of the dies. Alternatively, separate voltage controllers may be electrically coupled to each of the multiple dies and may be located on each of the respective dies.