-
公开(公告)号:US20210334637A1
公开(公告)日:2021-10-28
申请号:US17317857
申请日:2021-05-11
Applicant: INTEL CORPORATION
Inventor: Kamal Sinha , Balaji Vembu , Eriko Nurvitadhi , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Farshad Akhbari , Narayan Srinivasa , Feng Chen , Dukhwan Kim , Nadathur Rajagopalan Satish , John C. Weast , Mike B. MacPherson , Linda L. Hurd , Vasanth Ranganathan , Sanjeev S. Jahagirdar
IPC: G06N3/063 , G06N3/08 , G06N3/04 , G06T1/20 , G06F9/30 , G06T15/00 , G06F15/78 , G06F15/76 , G06F1/3287 , G06F1/3293
Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US11010659B2
公开(公告)日:2021-05-18
申请号:US15495020
申请日:2017-04-24
Applicant: Intel Corporation
Inventor: Kamal Sinha , Balaji Vembu , Eriko Nurvitadhi , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Farshad Akhbari , Narayan Srinivasa , Feng Chen , Dukhwan Kim , Nadathur Rajagopalan Satish , John C. Weast , Mike B. MacPherson , Linda L. Hurd , Vasanth Ranganathan , Sanjeev S. Jahagirdar
IPC: G06F17/50 , G06N3/063 , G06N3/08 , G06N3/04 , G06T1/20 , G06F9/30 , G06T15/00 , G06F15/78 , G06F15/76 , G06F1/3287 , G06F1/3293 , G06T1/60
Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US10956330B2
公开(公告)日:2021-03-23
申请号:US16727127
申请日:2019-12-26
Applicant: Intel Corporation
Inventor: Chandrasekaran Sakthivel , Prasoonkumar Surti , John C. Weast , Sara S. Baghsorkhi , Justin E. Gottschlich , Abhishek R. Appu , Nicolas C. Galoppo Von Borries , Joydeep Ray , Narayan Srinivasa , Feng Chen , Ben J. Ashbaugh , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Eriko Nurvitadhi , Balaji Vembu , Altug Koker
IPC: G06F12/0837 , G06N3/08 , G06N20/00 , G06T1/20 , G06F12/0815 , G06N3/063 , G06N3/04
Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US10679118B2
公开(公告)日:2020-06-09
申请号:US15385504
申请日:2016-12-20
Applicant: Intel Corporation
Inventor: Tsung-Han Lin , Narayan Srinivasa
Abstract: A spiking neural network (SNN) is defined that includes artificial neurons interconnected by artificial synapses, the SNN defined to correspond to one or more numerical matrices in an equation such that weight values of the synapses correspond to values in the numerical matrices. An input vector is provided to the SNN to correspond to a numerical vector in the equation. A steady state spiking rate is determined for at least a portion of the neurons in the SNN and an approximate result of a matrix inverse problem corresponding to the equation is determined based on values of the steady state spiking rates.
-
公开(公告)号:US20200051203A1
公开(公告)日:2020-02-13
申请号:US16417132
申请日:2019-05-20
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajikshore Barik , Nicolas C. Galoppo Von Borries
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , G06F9/48 , G06F17/16 , G06N3/04 , G06N3/08 , G06T1/60 , G06T15/00
Abstract: An apparatus to facilitate processing of a sparse matrix is disclosed. The apparatus includes a plurality of processing units each comprising one or more processing elements, including logic to read operands, a multiplication unit to multiply two or more operands and a scheduler to identify operands having a zero value and prevent scheduling of the operands having the zero value at the multiplication unit.
-
公开(公告)号:US10417734B2
公开(公告)日:2019-09-17
申请号:US15698217
申请日:2017-09-07
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
IPC: G06T1/20 , G06T1/60 , G09G5/36 , G06F3/06 , G06N3/08 , G06F3/14 , G06N3/04 , G06N3/063 , G09G5/00
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a memory device including a first integrated circuit (IC) including a plurality of memory channels and a second IC including a plurality of processing units, each coupled to a memory channel in the plurality of memory channels.
-
公开(公告)号:US10261903B2
公开(公告)日:2019-04-16
申请号:US15489149
申请日:2017-04-17
Applicant: Intel Corporation
Inventor: Chandrasekaran Sakthivel , Prasoonkumar Surti , John C. Weast , Sara S. Baghsorkhi , Justin E. Gottschlich , Abhishek R. Appu , Nicolas C. Galoppo Von Borries , Joydeep Ray , Narayan Srinivasa , Feng Chen , Ben J. Ashbaugh , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Eriko Nurvitadhi , Balaji Vembu , Altug Koker
IPC: G06F12/0837 , G06N3/08 , G06N20/00 , G06T1/20
Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
-
48.
公开(公告)号:US20180315399A1
公开(公告)日:2018-11-01
申请号:US15819152
申请日:2017-11-21
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
CPC classification number: G06F9/3001 , G06F7/483 , G06F7/5443 , G06F9/30014 , G06F9/30036 , G06F9/3851 , G06F2207/3824 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/08 , G06N20/00 , G06T15/005 , G09G5/393
Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
-
49.
公开(公告)号:US20180315398A1
公开(公告)日:2018-11-01
申请号:US15787129
申请日:2017-10-18
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
CPC classification number: G06F9/3001 , G06F7/483 , G06F7/5443 , G06F9/30014 , G06F9/30036 , G06F9/3851 , G06F2207/3824 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/08 , G06N20/00 , G06T15/005 , G09G5/393
Abstract: One embodiment provides for a machine-learning hardware accelerator comprising a compute unit having an adder and a multiplier that are shared between integer data path and a floating-point datapath, the upper bits of input operands to the multiplier to be gated during floating-point operation.
-
公开(公告)号:US20180293102A1
公开(公告)日:2018-10-11
申请号:US15482801
申请日:2017-04-09
Applicant: Intel Corporation
Inventor: Joydeep Ray , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Rajkishore Barik , Eriko Nurvitadhi , Nicolas C. Galoppo Von Borries , Tsung-Han Lin , Sanjeev Jahagirdar , Vasanth Ranganathan
Abstract: A mechanism is described for facilitating intelligent thread scheduling at autonomous machines. A method of embodiments, as described herein, includes detecting dependency information relating to a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a processor including a graphics processor. The method may further include generating a tree of thread groups based on the dependency information, where each thread group includes multiple threads, and scheduling one or more of the thread groups associated a similar dependency to avoid dependency conflicts.
-
-
-
-
-
-
-
-
-