Abstract:
A Node-B sends a polling message to a wireless transmit/receive unit (WTRU). The WTRU sends an uplink synchronization burst in response to the polling message without contention. The Node-B estimates an uplink timing shift based on the synchronization burst and sends an uplink timing adjustment command to the WTRU. The WTRU then adjusts uplink timing based on the uplink timing adjustment command. Alternatively, the Node-B may send a scheduling message for uplink synchronization to the WTRU. The WTRU may send a synchronization burst based on the scheduling message. Alternatively, the WTRU may perform contention-based uplink synchronization after receiving a synchronization request from the Node-B. The WTRU may enter an idle state instead of performing a handover to a new cell when the WTRU moves to the new cell. A discontinuous reception (DRX) interval for the WTRU may be set based on activity of the WTRU.
Abstract:
A method and apparatus for protecting high throughput (HT) stations (STAs) are disclosed. In one embodiment, a physical layer (PHY) legacy preamble transmitted by one STA is decoded by another STA that does not use a legacy preamble. In another embodiment, one STA is identified by another STA by using bits in the preamble of a packet to indicate which PHY type will be used in the remaining portion of the packet. In yet another embodiment, one STA sends ready-to-send (RTS)/clear-to-send (CTS) or CTS-to-self messages for reserving a medium in the presence of another STA of a different type than the one STA. In yet another embodiment, an access point (AP) transmits a beacon or an association message including a capability information element (IE) that indicates operation or support for a legacy preamble, HT STA preambles and a medium access control (MAC) packet transmission with HT protection mechanisms.
Abstract:
A method for addressing groups of stations in a wireless communication system begins by assigning the stations in the system into a number of groups. A group identifier is signaled to each station and the group identifier is indicated in a frame for each group that has data in the frame. The addressing method can be applied to power savings for the station, wherein the station enters a power saving mode if the group identifier for the station is not present in the frame.
Abstract:
A method for taking measurements with a smart antenna in a wireless communication system having a plurality of STAs begins by sending a measurement request from a first STA to a second STA. At least two measurement packets are transmitted from the second STA to the first STA. Each measurement packet is received at the first STA using a different antenna beam. The first STA performs measurements on each measurement packet and selects an antenna beam direction based on the measurement results.
Abstract:
A wireless network provides controlled wireless communications with multi-mode wireless WTRUs (33, 37). The wireless network has at least one base station (25) having a transceiver operating in an infrastructure communication mode withmulti mode WTRUs and a controller that transmits control signals via infrastructure communications with a WTRU that control peer-to-peer mode communications (40) of that WTRU with other WTRUs. A WTRU has transceiver components configured for selective operation in an infrastructure communication mode with a network base station and in a peer-to-peer communication mode with other WTRUs. The WTRU also has a transceiver controller configured to selectively control peer-to-peer mode communications with other WTRUs based on communication signals received in infrastructure communications with a network base station. Preferably, the transceiver controller is configured to control the transceiver components to switch between infrastructure communication mode and peer-to-peer communication mode based on(duality of Service criteria).
Abstract:
A method and system for controlling access to a medium in a wireless communication system. A superframe structure is defined in time domain to include a contention free period (CFP) which has at least one scheduled resource allocation (SRA), at least one management SRA (MSRA) and a contention period. An extended beacon (EB) including information about the SRA and MSRA is transmitted for. The MAC architecture reduces station battery consumption, supports higher throughput for non-real time (NRT) traffic and is more efficient for real time (RT) traffic while maintaining full compatibility.
Abstract:
An access point (14) operates in an 802.11 wireless communication network (10) communicating with a client station (12), and includes a smart antenna (16) for generating directional antenna beams (20) and an omni-directional antenna beam (22). An antenna steering algorithm (18) scans the directional antenna beams and the omni-directional antenna beam for receiving signals from the client station (12). The signals received via each scanned antenna beam are measured, and on of the antenna beams is selected based upon the measuring for communicating with the client station (12). The selected antenna beam is preferably a directional antenna beam. Once the directional antenna beam has been selected, there are several usage rules for exchanging data with the client station (12). The usage rules are directed to an active state of the access point (14), which includes a data transmission mode and a data reception mode.
Abstract:
A user equipment (UE 101) operating in a wireless system (103) having at least one base station (102), communicates with base stations (102b, 104b, 105b) in neighboring wireless systems and conveys information regarding these neighboring wireless systems to the base station (102b) of its wireless system (103), which updates and stores this information for use in handover of UEs. The BS may also obtain updates directly from the base stations of neighboring wireless systems which may include a diversity of systems such as WLANS, Bluetooth, UMTS, GPRS, etc., and provide to UEs a list of those wireless systems which the UEs need not provide updates to the BS providing the list.