Abstract:
The application describes a range of personal care products that include a keratin protein fraction. The fraction may be intact or hydrolysed. It is preferably S-sulfonated. The content of the fraction may range from 0.001% to 50%. In most formulations its content will be less than 1% although in certain products such as nail care products, the content will be higher. A wide range of personal care products are described including shampoos, body gels and lotions, conditioners, creams and cosmetics generally.
Abstract:
Film, fibre, foam and adhesive materials are produced from soluble S-sulfonated keratins. Once formed, the films, fibres, foams or adhesives are treated to modify the properties of the materials, in particular to improve the wet strength of the materials. Treatments used include removal of the S-sulfonate group by treatment with a reducing agent, treatment with an acid or treatment with a common protein crosslinking agent or treatment with a reduced form of keratin or keratin protein. The films are made by solvent casting a solution of S-sulfonated keratin proteins, the foam made by freeze-drying a solution of S-sulfonated keratin proteins and the fibres made by extruding a solution of a S-sulfonated keratin protein.
Abstract:
The invention relates to a wound care product that provides a biochemical environment around a wound to promote wound healing. The wound care product includes a keratin protein fraction material in which the protein fraction is intact, is from the intermediate filament protein family or the high sulphur protein family and in which the protein fraction is s-sulfonated. The invention also describes a method of making a wound care product.
Abstract:
A process for the preparation of soluble proteins of high molecular weight with little or no damage to the structural integrity of the proteins. The process is economically and environmentally acceptable by virtue of the cost of reagents that are used, and the recycling of some of those reagents, and is suitable for the production of soluble proteins on a large scale. The process includes a first stage using oxidative sulfitolysis followed by a second stage using mild conditions to extract the soluble protein. In the case of wool as the protein source the process leads to the production of soluble keratin proteins fractionated into the classes S-sulfonated keratin intermediate filament proteins and S-sulfontated keratin high sulfur proteins.