Abstract:
Target designs and methods are provided, which relate to periodic structures having elements recurring with a first pitch in a first direction. The elements are periodic with a second pitch along a second direction that is perpendicular to the first direction and are characterized in the second direction by alternating, focus-sensitive and focus-insensitive patterns with the second pitch. In the produced targets, the first pitch may be about the device pitch and the second pitch may be several times larger. The first, focus-insensitive pattern may be produced to yield a first critical dimension and the second, focus-sensitive pattern may be produced to yield a second critical dimension that may be equal to the first critical dimension only when specified focus requirements are satisfied, or provide scatterometry measurements of zeroth as well as first diffraction orders, based on the longer pitch along the perpendicular direction.
Abstract:
The present invention may include performing a first measurement on a wafer of a first lot of wafers via an omniscient sampling process, calculating a first set of process tool correctables utilizing one or more results of the measurement performed via an omniscient sampling process, randomly selecting a set of field sampling locations of the wafer of a first lot of wafers, calculating a second set of process tool correctables by applying an interpolation process to the randomly selected set of field sampling locations, wherein the interpolation process utilizes values from the first set of process tool correctables for the randomly selected set of field sampling locations in order to calculate correctables for fields of the wafer of the first lot not included in the set of randomly selected fields, and determining a sub-sampling scheme by comparing the first set of process tool correctables to the second set of correctables.
Abstract:
The disclosure is directed to systems for providing illumination to a measurement head for optical metrology. In some embodiments of the disclosure, illumination beams from a plurality of illumination sources are combined to deliver illumination at one or more selected wavelengths to the measurement head. In some embodiments of the disclosure, intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. In some embodiments of the disclosure, illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
Abstract:
Metrology systems and methods are provided herein, which comprise an optical element that is positioned between an objective lens of the system and a target. The optical element is arranged to enhance evanescent modes of radiation reflected by the target. Various configurations are disclosed: the optical element may comprise a solid immersion lens, a combination of Moiré-elements and solid immersion optics, dielectric-metal-dielectric stacks of different designs, and resonating elements to amplify the evanescent modes of illuminating radiation. The metrology systems and methods are configurable to various metrology types, including imaging and scatterometry methods.
Abstract:
A method of characterizing a process by selecting the process to characterize, selecting a parameter of the process to characterize, determining values of the parameter to use in a test matrix, specifying an eccentricity for the test matrix, selecting test structures to be created in cells on a substrate, processing the substrate through the process using in each cell the value of the parameter as determined by the eccentric test matrix, measuring a property of the test structures in the cells, and developing a correlation between the parameter and the property.
Abstract:
The present invention may include acquiring a plurality of overlay metrology measurement signals from a plurality of metrology targets distributed across one or more fields of a wafer of a lot of wafers, determining a plurality of overlay estimates for each of the plurality of overlay metrology measurement signals using a plurality of overlay algorithms, generating a plurality of overlay estimate distributions, and generating a first plurality of quality metrics utilizing the generated plurality of overlay estimate distributions, wherein each quality metric corresponds with one overlay estimate distribution of the generated plurality of overlay estimate distributions, each quality metric a function of a width of a corresponding generated overlay estimate distribution, each quality metric further being a function of asymmetry present in an overlay metrology measurement signal from an associated metrology target.