Abstract:
Techniques and apparatus for substantially reducing and/or preventing the occurrence of plasma un-confinement events, including one or more of shielding a gap disposed between chamber components and along a RF current path with a dielectric shielding structure, shielding a sharp component structure with a dielectric shielding structure, and keeping the gap between adjacent pairs of plasma confinement rings smaller than the worst-case DeBye length for the plasma.
Abstract:
Broadly speaking, the present invention fills these needs by providing an improved chamber cleaning mechanism. The present invention can also be used to provide additional knobs to tune the etch processes. In one embodiment, a plasma processing chamber configured to generate a plasma includes a bottom electrode assembly with an bottom electrode, wherein the bottom electrode is configured to receive a substrate. The plasma processing chamber includes a top electrode assembly with a top electrode and an inductive coil surrounding the top electrode. The inductive coil is configured to convert a gas into a plasma within a region defined within the chamber, wherein the region is outside an area defined above a top surface of the bottom electrode.
Abstract:
Apparatuses are provided for controlling flow conductance of plasma formed in a plasma processing apparatus that includes an upper electrode opposite a lower electrode to form a gap therebetween. The lower electrode is adapted to support a substrate and coupled to a RF power supply. Process gas injected into the gap is excited into the plasma state during operation. The apparatus includes a ground ring that concentrically surrounds the lower electrode and has a set of slots formed therein, and a mechanism for controlling gas flow through the slots.
Abstract:
Techniques and apparatus for substantially reducing and/or preventing the occurrence of plasma un-confinement events, including one or more of shielding a gap disposed between chamber components and along a RF current path with a dielectric shielding structure, shielding a sharp component structure with a dielectric shielding structure, and keeping the gap between adjacent pairs of plasma confinement rings smaller than the worst-case DeBye length for the plasma.
Abstract:
Broadly speaking, the embodiments of the present invention provides an improved plasma processing mechanism, apparatus, and method to increase the process uniformity at the very edge of the substrate. In an exemplary embodiment, a plasma processing chamber is provided. The plasma processing chamber includes a substrate support configured to receive a substrate. The plasma processing chamber also includes an annular ring having a plurality of gas channels defined therein. The annular ring is proximate to an outer edge of the substrate support and the annular ring is coupled to the substrate support. The plurality of gas channels is connected to an edge gas plenum surrounding the substrate support. The edge gas plenum is connected to a central gas plenum disposed within and near the center of the substrate support through a plurality of gas supply channels.
Abstract:
A plasma discharge electrode having a front surface with a central portion thereof including gas outlets discharging a process gas which forms a plasma and a peripheral portion substantially surrounding the gas outlets. The peripheral portion has at least one step for controlling a density of the plasma formed by the electrode. The electrode can be used as the grounded upper electrode in a parallel plate plasma processing apparatus such as a plasma etching apparatus. The geometric features of the step and of a corresponding edge ring on the lower electrode can be varied to achieve the desired etch rate profile across a wafer surface.
Abstract:
An electrode assembly of a semiconductor processing chamber wherein heat transfer between a backing plate and a showerhead electrode is improved by an electrostatic clamping arrangement, which includes a compliant material in contact with a surface of the showerhead electrode. The showerhead electrode is removably attached to the backing plate by a mechanical clamping arrangement which engages an outer periphery of the showerhead electrode. The electrostatic clamping arrangement is coextensive with the showerhead electrode to improve thermal conduction between the backing plate and the showerhead electrode.
Abstract:
A gas distribution system for uniformly or non-uniformly distributing gas across the surface of a semiconductor substrate. The gas distribution system includes a support plate (20) and a showerhead (22) which are secured together to define a gas distribution chamber (24) therebetween. A baffle assembly (26) including one or more baffle plates is located within the gas distribution chamber. The baffle arrangement includes a first gas supply (40) supplying process gas to a central portion (42) of the baffle chamber and a second gas supply (44) supplying a second process gas to a peripheral region (46) of the baffle chamber. Because the pressure of the gas is greater at locations closer to the outlets of the first and second gas supplies, the gas pressure at the backside of the showerhead can be made more uniform than in the case with a single gas supply.
Abstract:
A plasma processing systems having at least one plasma processing chamber, comprising a movable grounding component, an RF contact component configured to receive RF energy from an RF source when the RF source provides the RF energy to the RF contact component, and a ground contact component coupled to ground. The plasma processing system further includes an actuator operatively coupled to the movable grounding component for disposing the movable grounding component in a first position and a second position. The first position represents a position whereby the movable grounding component is not in contact with at least one of the RF contact component and the ground contact component. The second position represents a position whereby the movable grounding component is in contact with both the RF contact component and the ground contact component.
Abstract:
An electrode is exposed to a plasma generation volume and is defined to transmit radiofrequency power to the plasma generation volume, and includes an upper surface for holding a substrate in exposure to the plasma generation volume. A gas distribution unit is disposed above the plasma generation volume and in a substantially parallel orientation to the electrode. The gas distribution unit includes an arrangement of gas supply ports for directing an input flow of a plasma process gas into the plasma generation volume in a direction substantially perpendicular to the upper surface of the electrode. The gas distribution unit also includes an arrangement of through-holes that each extend through the gas distribution unit to fluidly connect the plasma generation volume to an exhaust region. Each of the through-holes directs an exhaust flow from the plasma generation volume in a direction substantially perpendicular to the upper surface of the electrode.