Abstract:
A method of triggering registration of a mobile station in a network supporting broadcast multicast services employs registration triggers based on flow conditions and frequency conditions. For example, a registration message may be generated based on a change in frequency, from a first frequency to a second frequency, that is monitored by the mobile station. If the second frequency is not known to the network based on flow identifier information previously registered by the mobile station with the network, a registration to the network is triggered. By sending a registration, the network may page a mobile station on a single, given frequency, since the registration message indicates the mobile station's presence on that given frequency.
Abstract:
The error detection method includes decoding a portion of each control channel that is simultaneously received by a user equipment (UE) in a wireless communication system. The UE is provided with techniques to determine if one or more of the control channels were successfully received during the decoding step. If more than one control channel was successfully received, the method selects only one of the successfully received control channels based on calculated path metric differences (PMD) that serve as a "tie-breaking" mechanism to select the correct control channel for a particular UE.
Abstract:
A scheduler (119) and a method for scheduling transmissions to a plurality of users (105) in a communication network assigns a higher target minimum throughput for receiving a next transmission to a user (105) based on a quality of service (QoS) class of the user (105). A token count that tracks the user's achieved performance relative to a target minimum throughput Is determined for each user (105) in given timeslot, and a weight is determined for each user (105) based on one or more of the token count and a current rate requested by the user (105). A user (105) having the highest weight as determined by a weight function is scheduled to be served the next transmission. User priority for scheduling may be downgraded if an average data rate requested by the user (105) is less than the target minimum throughput.
Abstract:
A method for scheduling transmissions to a plurality of users in a communication network determines a satisfaction metric and a dissatisfaction metric for each user in a given timeslot that is to be used for a next scheduled transmission to one of the users. Each user is assigned a weight based on a value of at least one of the user's satisfaction metric, the user's dissatisfaction metric and a rate requested by the user. The use having the highest weight is selected to be served the next scheduled transmission in the given timeslot.
Abstract:
Disclosed is a method of data rate adaptation based on channel conditions. In the present invention, data is initially transmitted at a first data rate based on a measured first channel condition and, if a NACK is received, the data is retransmitted. The data retransmitted is at a rate which is based on the condition of the channel during or before the transmission of the NACK. The data retransmission rate can also be based on the actual channel condition at the time of the first transmission plus the condition of the channel before or during the transmission of the NACK.
Abstract:
A method that globally allocates resources of a communication system. A global fast scheduler receives global CQI information from UEs of a communication system. The global fast scheduler determines a resource allocation value and assigns a UE to any available cell site that is a member of the active set of the UE and which can service the UE in accordance with the determined resource allocation value.
Abstract:
A method that globally allocates resources of a communication system. A global fast scheduler receives global CQI information from UEs of a communication system. The global fast scheduler determines a resource allocation value and assigns a UE to any available cell site that is a member of the active set of the UE and which can service the UE in accordance with the determined resource allocation value.
Abstract:
Disclosed is a method of sub-packet adaptation based on data rate. Specifically, the size of a sub-packet is adapted to a data rate at which the sub-packet is to be transmitted. In one embodiment, the sub-packet is size adapted to the data rate in a format that would allow such size adapted sub-packet to be soft combined with another sub-packet of a same or different size. The size adapted sub-packet may be transmitted prior to or after the other sub-packet.