Abstract:
An iterative method (400) and apparatus for a receiver for reducing interference in a desired signal in a GSM communication system uses a finite-impulse-response filter combined with alternate quadrature component output selection for alternate linear equalization are disclosed. The method includes inputting a burst of data of a received waveform including interference (402), training an alternate linear output filter with a midamble of known quadrature phase (404), providing an estimate of the desired signal by operating on the received waveform with the finite-impulse-response filter (406), generating Log likelihood ratio estimates for a plurality of bits in the burst of data (408), selecting bits from the burst of data base upon a predetermined condition (414), and re-training the alternate linear output filter to provide a second improved estimate of the desired signal.
Abstract:
An efficient apparatus for performing frequency conversion from a final IF frequency to a baseband frequency is described. A counter (401) generates two logical signals G1 (402) and G2 (403) which are passed to an exclusive-OR gate (404) and a multiplexer (406). When a control signal (411) is deasserted, multiplexer (406) passes signal G1 to I1 and signal G2 to I2; when control signal (411) is asserted, multiplexer (406) passes binary signal G1 to I2 (410) and signal G2 to I1 (407). Similarly, multiplexer (405) swaps its input real and imaginary samples when the output of exclusive-OR gate (404) is asserted; otherwise, it performs no operation on its input samples. Signals I1 (407) and I2 (410) are used to control arithmetic inverters (408) and (409) respectively. When the controlling signal for either inverter is asserted, the inventer performs arithmetic inversion, otherwise it performs no operation.
Abstract:
A code division multiple access (CDMA) communicating system reduces interference by reducing the encoding rate for selected mobiles. The system (400) primarily uses link related characteristics such as, inter alia, distance measurements, physical resource power, and mobile determined noise, to determine which mobiles require an encoding rate reduction. Once determined, the encoding rate of the determined mobiles is reduced, which in turn reduces self-interference and enhances system capacity.
Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources (770). A control field (1103) may be sent with a payload field (1105) wherein the control field (1103) and payload field (1105) are sent using a single Orthogonal Variable Spreading Factor or a single Walsh Code (1101) wherein various modulation and coding schemes may be applied to the control field (1103) and payload field (1105) such that different modulation and coding schemes may be used within the single channel. HARQ is handled by sending a single retransmission if a NACK message is received or no ACK/NACK message is received at all.
Abstract:
A method (300) and an apparatus (202) for a digital diversity receiver having a first receiver branch (204) and a second receiver branch (206) for adjusting a receiver power control loop during a radio frame (100) of a known length are provide. The digital diversity receiver (202) receives a first signal (208) through the first receiver branch (204) during the radio frame (100), and receives a second signal (210) through the second receiver branch (206) during a portion of the radio frame (106, 110). The second signal (210) originates from a common original signal (212) as the first signal 208. The digital diversity receiver (202) evaluates (308) a receiver power control parameter for the first interval (106) based upon the first signal (208) and the second signal (210), and compensates (310) the receiver power control parameter with an offset value for the first interval (106). The compensated receiver power control parameter is then applied (312) to the receiver power control loop during the first interval.
Abstract:
A method for rate selection by a communication device for enhanced uplink during soft handoff in a wireless communication system includes a first step of receiving information from a scheduler. This information can include one or more of scheduling, a rate limit, a power margin limit, and a persistence. A next step includes determining a data rate for an enhanced uplink during soft handoff using the information. A next step includes transmitting to a serving base station on an enhanced uplink channel at the data rate determined from the determining step.
Abstract:
The method includes acquiring a signal (501); inputting (502), at a first time, a received symbol to a demodulator having a plurality of outputs to produce a set of early outputs; inputting (504), at a second time, the received symbol to the demodulator to produce a set of on-time outputs; inputting (505), at a third time, the received symbol to the demodulator to produce a set of late outputs; and comparing (506) at least one output in the set of early outputs with at least one output in the set of late outputs to produce a timing measure.
Abstract:
Joint detection of data signals occurs in a code division, multiple access (CDMA) communication system as follows: a digital signal processor (315) first extracts a midamble portion of transmitted signal vectors and generates an estimate of the channel response corresponding to each user-antenna pair using a channel estimator (401). In the preferred embodiment, each user's transmission within the communication system comprises either the type-1 or type-2 burst with varying midamble and guard period durations. Next, a convolution processor (402) forms the convolution of the user signature sequence with the channel impulse response estimate associated with each user and each of the antennas (308-310). A detector (403) utilizes the set of vectors and creates a set of sub-system matrices and solves the sub-system matrices to extract symbol information from an individual remote unit's transmission. Finally, the detector (403) outputs symbol information for subsequent infrastructure processing.
Abstract:
A method for sleep mode during an impending handover is disclosed. The method comprises receiving (104) from a network a handover threshold value. Then once in sleep mode, monitoring (128) a channel condition of a handover candidate cell and determining that the handover threshold value of the handover candidate cell has been exceeded. After receiving a pending data indicator, remaining awake (134) to receive a data set associated with the pending data indicator. The network re-schedules (216) transmission of the data set to the mobile station.