Abstract:
Methods and systems for dependency tracking include identifying a hot process that generates bursts of events with interleaved dependencies. Events related to the hot process are aggregated according to a process-centric dependency approximation that ignores dependencies between the events related to the hot process. Causality in a reduced event stream that comprises the aggregated events is tracked.
Abstract:
Systems and methods are disclosed for handling log data from one or more applications, sensors or instruments by receiving heterogeneous logs from arbitrary/unknown systems or applications; generating regular expression patterns from the heterogeneous log sources using machine learning and extracting a log pattern therefrom; generating models and profiles from training logs based on different conditions and updating a global model database storing all models generated over time; tokenizing raw log messages from one or more applications, sensors or instruments running a production system; transforming incoming tokenized streams are into data-objects for anomaly detection and forwarding of log messages to various anomaly detectors; and generating an anomaly alert from the one or more applications, sensors or instruments running a production system.
Abstract:
Methods and systems for profiling requests include generating request units (202) based on collected kernel events that include complete request units and half-open request units. The generated request units are sequenced (204) based on a causality relationship set that describes causality relationships between kernel events.
Abstract:
Methods and systems for network management include performing (304) path regression to determine an end-to-end path across physical links for each data flow in a network. A per-flow utilization of each physical link in the network is estimated (314) based on the determined end-to-end paths. A management action is performed (316) in the network based on the estimated per-flow utilization.
Abstract:
Systems and methods for detection and prevention of Return-Oriented-Programming (ROP) attacks in one or more applications, including an attack detection device and a stack inspection device for performing stack inspection to detect ROP gadgets in a stack. The stack inspection includes stack walking from a stack frame at a top of the stack toward a bottom of the stack to detect one or more failure conditions, determining whether a valid stack frame and return code address is present; and determining a failure condition type if no valid stack frame and return code is present, with Type III failure conditions indicating an ROP attack. The ROP attack is contained using a containment device, and the ROP gadgets detected in the stack during the ROP attack are analyzed using an attack analysis device.
Abstract:
Systems and methods for network management, including adaptively installing one or more monitoring rules in one or more network devices on a network using an intelligent network middleware, detecting application traffic on the network transparently using an application demand monitor, and predicting future network demands of the network by analyzing historical and current demands. The one or more monitoring rules are updated once counters are collected; and network paths are determined and optimized to meet network demands and maximize utilization and application performance with minimal congestion on the network.
Abstract:
Method and systems for controlling a hybrid network having software-defined network (SDN) switches and legacy switches include initializing a hybrid network topology by retrieving information on a physical and virtual infrastructure of the hybrid network; generating a path between two nodes on the hybrid network based on the physical and virtual infrastructure of the hybrid network; generating a virtual local area network by issuing remote procedure call instructions to legacy switches in accordance with a network configuration request; and generating an SDN network slice by issuing SDN commands to SDN switches in accordance with the network configuration request.
Abstract:
A device used in a network is disclosed. The device includes a network monitor to monitor a network state and to collect statistics for flows going through the network, a flow aggregation unit to aggregate flows into clusters and identify flows that can cause a network problem, and an adaptive control unit to adaptively regulate the identified flow according to network feedback. Other methods and systems also are disclosed.
Abstract:
A system and method for optimizing system performance includes applying (160) sampling based optimization to identify optimal configurations of a computing system by selecting (162) a number of configuration samples and evaluating (166) system performance based on the samples. Based on feedback of evaluated samples, a location of an optimal configuration is inferred (170). Additional samples are generated (176) towards the location of the inferred optimal configuration to further optimize a system configuration.
Abstract:
Methods and systems for detecting anomalous events include detecting anomalous events (42, 43) in monitored system data. An event correlation graph is generated (302) based on the monitored system data that characterizes the tendency of processes to access system targets. Kill chains are generated (310) that connect malicious events over a span of time from the event correlation graph that characterize events in an attack path over time by sorting events according to a maliciousness value and determining at least one sub-graph within the event correlation graph with an above-threshold maliciousness rank. A security management action is performed (412) based on the kill chains.