Abstract:
Techniques for canceling pilot interference in a wireless (e.g., CDMA) communication system. A received signal typically includes a number of signal instances (i.e., multipaths). For each multipath desired to be processed, the other multipaths act as interference on the desired multipath. If the pilot is generated based on a known data pattern (e.g., all zeros) and covered with a known channelization code (e.g., a Walsh code of zero), then the pilot in an interfering multipath may be estimated as the spreading sequence at a time offset corresponding to the arrival time of that multipath. The pilot interference from each interference multipath may be estimated based on the spreading sequence for the interfering multipath and the despreading sequence for the desired multipath. The total pilot interference from a number of interfering multipaths may be subtracted from the data component in the desired multipath to provide pilot-canceled data having improved performance.
Abstract:
In a CDMA data communication system capable of variable rate transmission, utilization of beam switching techniques decreases the average interference caused by transmissions of a base station to subscriber stations within a cell, and in neighboring cells. Base stations utilize multiple transmit antennas, each transmitting signals at controlled amplitudes and phases, to form transmit signal corresponding to sector divisions. Data and reference signals are transmitted along sector division beams that alternate according to fixed time slots in order to increase system capacity and data rates by maximizing carrier-to-interference ratios (C/I) measured at subscriber stations.
Abstract:
A method and apparatus are disclosed for transmitting ACK/NAK information in a communication system including a transmitter (74) for transmitting ACK/NAK information on an ACK/NAK channel, and a channel gate (699) for gating the ACK/NAK channel based on whether a matching preamble is detected in a received data unit by receiver (106). The data unit is a first data unit in a series of data units comprising a data packet. The channel gate (699) prevents transmission of the ACK/NAK channel when receiver (106) has failed to receive the matching preamble in the data unit.
Abstract:
Methods and apparatus for communicating between an access terminal (AT) and a device serving the AT by way of an Access Point (AP) are described. In accordance with one feature serving devices may be assigned specific addresses which are interpreted based on the source of the communication, e.g., MAC packet, in which the address is used. Such addresses may be interpreted as being of a different type than other addresses which can be interpreted and/or used without taking into account the identity of the sender. In some embodiments Session Controllers and/or Internet Attachment Points (IAPs) are identified with such addresses. The address value is the same for one or more ATs but is interpreted at an AP receiving such the IAP address based on information corresponding to the AT which sent the packet including the IAP or Session Controller address.
Abstract:
Methods and apparatus for communicating between an access terminal (AT) and remote device via an access point (AP) are described. For communications over the air link, between an AP and an AT a short address corresponding to the remote device is used for routing packets to/from the remote device. This conserves air link resources. However, for communicating between the AP and the remote device a longer address, e.g., a full IP address corresponding to the remote device is used. The AT converts between the long and short addresses as information, e.g., packets are communicated between the remote device and the AT. The long address may be, for example, an IP address corresponding to the remote device used to route packets through a Layer 2 tunnel between the remote device and the AP. In some embodiments the remote device is a remote access point.
Abstract:
Embodiments disclosed herein relate to methods and systems for reporting and compiling connection failures in wireless communication systems. In an embodiment, when an access terminal experiences a connection failure (e.g., an unintended one), the access terminal may generate a connection failure record associated with the event, and send a message containing the connection failure record to an access network it has since established the connection. The access network may send a message containing a connection failure report acknowledgement (ACK) message to the access terminal, upon reception of the connection failure report message. The network operators may use the connection failure records thus compiled to identify problematic spots in the system and improve the quality of service.
Abstract:
Embodiments disclosed herein relate to a new set of radio link protocols (RLPs) configured to provide for efficient data transmission in a multi-link communication system. In an embodiment, an upper-layer packet is segmented into link-layer packets to be transmitted over a plurality of communication links, each including a first sequence number in accordance with a predetermined order. A second sequence number is further added to each link-layer packet to be transmitted for the first time. The second sequence number is configured to be in a sequence space associated with a particular communication link, and may be used for detection of missing packets.
Abstract:
Systems and techniques are disclosed relating to wireless communications. The systems and techniques involve monitoring a first network in accordance with a first air interface, and receiving a message from a second network through the first air interface, the second network being associated with a second air interface different from the first air interface. Various registration and related techniques are also discussed for maintaining connectivity with both networks as the wireless communications device moves through different geographic coverage regions.
Abstract:
In a high data rate communication system, a method and apparatus for efficiently establishing a connection between an access terminal and an access network using a fast access channel and a fast access indicator. Upon receiving a fast access indicator (406) in response to a fast access probe (404), an access terminal begins transmitting a traffic channel signal (408) containing data rate control (DRC) information. The DRC information is used by the access network to transmit messages such as a traffic channel assignment message (410) at the requested DRC rate.