Abstract:
A "time multiplexed" transmission scheme capable of reducing the amount of interference from other cells operated at the same frequency band. Each cell in a system transmits in designated time intervals (e.g., time slots) during which other interfering cells may be prevented from transmitting. By temporarily "blanking" transmissions from interfering cells during the designated time slots, the amount of interference from these cells is reduced. The improved signal quality may support transmission at a desired or higher data rate, which may not be possible without cell blanking. In one variant, transmissions from the cells are staggered over different time slots. A set of one or more cells may be designated to transmit in each of a number of slot phases. The cells transmit in a staggered manner on these phases to reduce interference. The transmission scheme may be used for a various channel types (e.g., a control channel) and applications.
Abstract:
A "time multiplexed" transmission scheme capable of reducing the amount of interference from other cells operated at the same frequency band. Each cell in a system transmits in designated time intervals (e.g., time slots) during which other interfering cells may be prevented from transmitting. By temporarily "blanking" transmissions from interfering cells during the designated time slots, the amount of interference from these cells is reduced. The improved signal quality may support transmission at a desired or higher data rate, which may not be possible without cell blanking. In one variant, transmissions from the cells are staggered over different time slots. A set of one or more cells may be designated to transmit in each of a number of slot phases. The cells transmit in a staggered manner on these phases to reduce interference. The transmission scheme may be used for a various channel types (e.g., a control channel) and applications.
Abstract:
A "time multiplexed" transmission scheme capable of reducing the amount of interference from other cells operated at the same frequency band. Each cell of a system transmits in designated time intervals (e.g., time slots) during which other interfering cells may be prevented from transmitting. By temporarily "blanking" transmissions from interfering cells during the designated time slots, the amount of interference from these cells is reduced. The improved signal quality may support transmission at a desired or higher data rate, which may not be possible without cell blanking. In one variant, transmissions from the cells are staggered over different time slots. A set of one or more cells may be designated to transmit in each of a number of slot phases. The cells transmit in a staggered manner on theses phases to reduce interference. The transmission scheme may be used for a various channel types (e.g., a control channel) and applications.
Abstract:
In a CDMA data communication system capable of variable rate transmission, utilization of beam switching techniques decreases the average interference caused by transmissions of a base station to subscriber stations within a cell, and in neighboring cells. Base stations utilize multiple transmit antennas, each transmitting signals at controlled amplitudes and phases, to form transmit signal corresponding to sector divisions. Data and reference signals are transmitted along sector division beams that alternate according to fixed time slots in order to increase system capacity and data rates by maximizing carrier-to-interference ratios (C/I) measured at subscriber stations.