Abstract:
Methods and apparatus are provided for using a breakpoint determination unit to examine an artificial nervous system. One example method generally includes operating at least a portion of the artificial nervous system; using the breakpoint determination unit to detect that a condition exists based at least in part on monitoring one or more components in the artificial nervous system; and at least one of suspending, examining, modifying, or flagging the operation of the at least the portion of the artificial nervous system, based at least in part on the detection.
Abstract:
Methods and apparatus are provided for training a neural device having an artificial nervous system by modulating at least one training parameter during the training. One example method for training a neural device having an artificial nervous system generally includes observing the neural device in a training environment and modulating at least one training parameter based at least in part on the observing. For example, the training apparatus described herein may modify the neural device's internal learning mechanisms (e.g., spike rate, learning rate, neuromodulators, sensor sensitivity, etc.) and/or the training environment's stimuli (e.g., move a flame closer to the device, make the scene darker, etc.). In this manner, the speed with which the neural device is trained (i.e., the training rate) may be significantly increased compared to conventional neural device training systems.
Abstract:
Various embodiments for modifying learning capabilities within a decentralized system of learning devices, a method including receiving, at a learning device, a signal from a nearby device, determining whether the received signal is a learning modifier signal based on data within the received signal, and modifying one or more of the learning capabilities in response to determining that the received signal is the learning modifier signal. The method may further include determining whether subsequent learning modifier signals are received, and resetting the modified one or more of the learning capabilities in response to determining that the subsequent learning modifier signals are not received. Modifying learning capabilities may include enabling or disabling a learning mode of the learning device and/or adjusting values of variables used to calculate trigger weights of reflexes. When subsequent learning modifier signals are not received, the learning device may reset modified learning capabilities.
Abstract:
Methods and apparatus are provided for implementing structural plasticity in an artificial nervous system. One example method for altering a structure of an artificial nervous system generally includes determining a synapse in the artificial nervous system for reassignment, determining a first artificial neuron and a second artificial neuron for connecting via the synapse, and reassigning the synapse to connect the first artificial neuron with the second artificial neuron. Another example method for operating an artificial nervous system, generally includes determining a synapse in the artificial nervous system for assignment; determining a first artificial neuron and a second artificial neuron for connecting via the synapse, wherein at least one of the synapse or the first and second artificial neurons are determined randomly or pseudo-randomly; and assigning the synapse to connect the first artificial neuron with the second artificial neuron.
Abstract:
An embodiment method for continuous configuration of learning devices includes operations for storing, by a learning device within a decentralized system of a plurality of learning devices, events obtained while in a monitoring mode, activating a triggered mode for a reflex when at least one of the stored events corresponds to a trigger pattern, determining whether the reflex has a trigger weight exceeding a trigger weight threshold, conducting the predetermined action associated with the reflex when the trigger weight exceeds the trigger weight threshold, obtaining at least one additional event while in the triggered mode, adjusting the trigger weight of the reflex when the at least one additional event corresponds to a correction pattern or a reward pattern occurring in response to conducting the predetermined action, and creating a second reflex when the at least one additional event does not correspond to a known pattern.
Abstract:
Various embodiments for conducting proxy teaching for learning devices within a decentralized system, including an embodiment method with operations for obtaining, by a teacher signaling device, objectives data related to activities of one or more of the learning devices, generating, by the teacher signaling device, teaching routines based on the obtained objectives data, and broadcasting, by the teacher signaling device, teaching signals configured to teach one or more of the learning devices based on the generated teaching routines. Other embodiments may obtain objectives data by requesting reflex information from the learning devices or intercepting event report messages transmitted by the learning devices. Other embodiments may include broadcasting discovery signals to identify nearby learning devices and modifying teaching routines when objectives of the generated teaching routines cannot be achieved. Other embodiments may include transmitting an authorization request to a user device to determine whether to broadcast teaching signals.
Abstract:
An embodiment delay device for use within a decentralized system of learning device delays broadcast messages to introduce a time shift into events. The delay device may receive a first message from a triggering device, generate a first pattern using at least a first event based on the received first message, determine whether the first pattern matches a known trigger pattern, wait a predetermined delay period in response to determining that the first pattern matches the known trigger pattern, and broadcast a second message in response to the predetermined delay period expiring. Delay periods may be user-configurable, such as via user inputs (e.g., dials, sliders, etc.) or learned based on messages from responding devices. The second message may be similar to the first message or a distinct message indicating the elapse of the delay period.
Abstract:
In a communication system (1400) for communication of data, a method and apparatus provide for detecting a request for opening a connection for a user (1407) for communication of data, selecting an open connection, releasing the selected open connection, and allocating, to the user (1407), communication resources corresponding to resources released based on releasing the selected open connection. In accordance with an embodiment, the selected open connection is in an idle open state.