Abstract:
A method and system for reverse link interference cancellation. One method comprises demodulating and decoding at least one signal sent from at least one access terminal and received by a first base station, sending demodulated, decoded information of the signal to a second base station, reconstructing the signal at the second base station, and subtracting the reconstructed signal from a buffer at the second base station.
Abstract:
Techniques to improve the acquisition process in a spread spectrum environment. The signals from different CDMA systems are spread with different sets of PN sequences, with the PN sequences in each set being uncorrelated to the PN sequences in the other sets. By using uncorrelated PN sequences, the likehood of detecting a pilot signal from an undesired system is reduced or minimized, and the mean time to acquisition of the pilot signal from the desired system is improved. The mobile station can attempt to acquire the pilot signal by processing the received signal with a first set of PN sequences corresponding to a first hypothesis of the particular signal being acquired. If acquisition of the pilot signal fails, a second set of PN sequences corresponding to a second hypothesis is selected and used to process the received signal. The PN sequences in the second set are uncorrelated to the PN sequences in the first set. The PN sequences for the first set can be generated based on the characteristic polynomials defined by IS-95-A, and the PN sequences for the second set can be the reverse of the PN sequences for the first set.
Abstract:
A system and method is taught for controlling the power level of transmissions within a communication system having a base station, a mobile station, a communication channel, and a pilot channel. The mobile station determines a signal strength value according to a communication signal received by way of the communication channel. A pilot channel signal is determined according to a pilot signal transmitted by way of the pilot channel. The signal to noise ratio of the communication signal is determined according to the determined signal strength value and the pilot channel signal. The power level of a transmission is controlled according to the signal to noise ratio. The noise level in a communication channel within the communication system is estimated. The pilot channel signal includes pilot energy and pilot noise components. The pilot energy component is removed to provide a remaining pilot signal. Communication system operations are controlled according to the remaining pilot signal. The power levels of transmissions are controlled by determining the signal to noise ratio of a signal within the communication channel and determining a difference signal. The difference signal is formed by determining the difference between determined and desired signal to noise ratios. The difference signal is transmitted between the base station and the mobile station. The pilot channel has at least one frame and the power control signal is inserted into the frame. Thus, information representing the strength of the communication signal is transmitted to the base by way of the pilot channel within the frame. The pilot channel can have two information frames for transmitting the power control signal a plurality of times.
Abstract:
A method and apparatus for optimizing system parameters in a cellular communication network. Pilot strength measurement messages (PSMMs) that are received by base stations (4a-4s) of the network to be optimized are saved in a database. The database accumulates the raw data contained in the pilot strength measurement messages. After a sufficient amount of data has been collected, a report generator (23) compiles a statistics report for each base station based on the raw PSMM data. The present invention then provides a method for applying the information in the report in order to optimize the network parameters of the cellular system. The neighbor list which is transmitted on the paging or traffic channel is revised in accordance with the compiled statistics. The antenna tilt of base stations (4a-4s) is adjusted in accordance with the compiled statistics.
Abstract:
In a CDMA data communication system capable of variable rate transmission, utilization of beam switching techniques decreases the average interference caused by transmissions of a base station to subscriber stations within a cell, and in neighboring cells. Base stations utilize multiple transmit antennas, each transmitting signals at controlled amplitudes and phases, to form transmit signal corresponding to sector divisions. Data and reference signals are transmitted along sector division beams that alternate according to fixed time slots in order to increase system capacity and data rates by maximizing carrier-to-interference ratios (C/I) measured at subscriber stations.
Abstract:
In a wireless communication system, in order to determine a level of loading, the system enters a period of silence during which a designated remote unit (42) continues to transmit but other remote unit transmissions are interrupted. The base station (40) and designated remote unit (42) perform closed loop power control on a reverse link signal received from the designated remote. A first series of power control commands accumulated and a first corresponding transmit gain adjustment value is stored. Normal operation is resumed. Once again, the base station (40) and designated remote unit perform closed loop power control on the reverse link signal received from the designated remote unit (42). A second series of power control commands are accumulated and a second corresponding transmit gain adjustment value is stored. A level of loading is determined based upon the first and second transmit gain adjustment values.
Abstract:
A method and apparatus for providing soft hand-off in a mobile communication system. In current systems, members of an active set of base stations (4, 4A, 4B, 4C) are determined by comparing measured pilot energy with fixed thresholds. The value of providing a redundant communication link to a mobile station (2) primarily depends on the energy of other signals being provided to the mobile station (2). In the present invention, the signal strength of each signal transmitted by other base stations (4, 4A, 4B, 4C) in communication with a mobile station (2) is considered when determining whether to add a base station to the set of base stations (4, 4A, 4B, 4C) in communication with the remote station. A base station is added only if the signal received from that base station provides sufficient added value to justify the impact on system capacity.
Abstract:
In a communications network, a network user communicates through a remote unit (30) with another user via at least one base station (100). The communications network includes a first mobile switching center (MSC-I) which controls communications through a first set of base stations including a first base station (100). The remote unit (30) stores a list of active base stations which has an entry corresponding to each base station with which active communication is established. The first base station (100) has an entry on the list of active base stations. The first base station (100) measures a round trip delay of an active communication signal between the first base station (100) and the remote unit (30). A handoff of the active communication signal is initiated if the round trip delay of the active communication exceeds a threshold if the first base station (100) is designated as a reference base station. Alternatively, the remote unit (30) also stores a list of candidate base stations comprising an entry corresponding to each base station through which active communication may be possible but is not established. A handoff of the active communication signal is initiated if the list of candidate base stations comprises an entry corresponding to a triggering pilot signal.
Abstract:
The process of the present invention enables a communication link to have a higher data rate input signal while maintaining a constant data rate output signal. The method first convolutionally encodes the input data signal to produce a plurality of convolutionally encoded signals. Each of the convolutionally encoded signals are comprised of a plurality of data symbols. Each data symbol is repeated a predetermined number of times to produce a code repetition data sequence at a predetermined and fixed rate. The data sequence is then punctured such that symbols in predetermined locations of the data sequence are deleted thus generating a data sequence at a predetermined and fixed rate which is lower than that of the original data sequence. The encoded signals with the repeated data symbols are multiplexed to produce a data sequence.
Abstract:
NUM SISTEMA DE COMUNICAÇÃO DE DADOS, CAPAZ DE TRANSMISSÃO COM VELOCIDADE DE TRANSMISSÃO VARIADA, A TRANSMISSÃO DE DADOS POR PACOTES A VELOCIDADE ELEVADA MELHORA A UTILIZAÇÃO DA VIA DE LIGAÇÃO DE IDA E DIMINUI O ATRASO DA TRANSMISSÃO. A TRANSMISSÃO DOS DADOS NA VIA DE LIGAÇÃO DE IDA É FEITA PELO PROCESSO MULTIPLEX POR DIVISÃO DO TEMPO E A ESTAÇÃO DE BASE EMITE COM A VELOCIDADE DE TRANSMISSÃO DE DADOS MAIS ELEVADA SUPORTADA PELA VIA DE LIGAÇÃO DE IDA, EM CADA FAIXA DE TEMPO (SLOT) , PARA UMA ESTAÇÃO MÓVEL, O SISTEMA DE COMUNICAÇÃO TRANSMITE PERIODICAMENTE UM MENSAGEM DE PEDIDO DE DADOS (MENSAGENS DRC) E É AUXILIADO POR PROGRAMAS DE COMPUTADOR INCLUSIVE PARA TAXA DE ERRO NOS BITS.