Abstract:
The disclosure relates in some aspects to a scalable transmission time interval (TTI) and hybrid automatic repeat request (HARQ) design. The TTI is scalable to, for example, achieve latency and/or efficiency tradeoffs for different types of traffic (e.g., mission critical traffic versus traffic with more relaxed latency requirements). In the event a longer TTI is employed, various techniques are disclosed for ensuring a fast turn-around HARQ, thereby maintaining a high level of communication performance.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Un procedimiento de comunicación inalámbrica en un equipo de usuario, UE (115; 115-a; 115-b), que comprende: recibir un primer conjunto de señales piloto (210) basadas, al menos en parte, en una configuración de transmisión piloto periódica; recibir una ráfaga de baja latencia que comprende un segundo conjunto integrado de señales piloto (215) basadas al menos en parte en una configuración de transmisión piloto de ráfaga y que comprende una o más transmisiones de canal de control (315-a), en el que la configuración de transmisión piloto de ráfaga es diferente de la configuración de transmisión piloto periódica; y convertir las una o más transmisiones del canal de control (315-a) en datos piloto para la desmodulación de la ráfaga de baja latencia.
Abstract:
Wireless communications systems, methods, and techniques related to signaling and determining slot and mini-slot structures are provided. A first wireless communication device transmits a first signal according to a first numerology including at least a first tone spacing. The first signal indicates a second numerology including at least a second tone spacing. The first wireless communication device transmits a second signal according to the second numerology. The first signal includes a physical broadcast channel (PBCH) signal. The second numerology is independent from the first numerology. Different slot/mini-slot structures may be utilized for varying channel types to support mixed numerology arrangements. Embodiments may utilize single and varied slot structures; single slot structures may be decoupled from transmission numerology and varied slot structures may be defined based on reference numerology. Other aspects, embodiments, and features are also claimed and described.
Abstract:
A method and apparatus for a decision feedback equalizer wherein a correction term is used to compensate for slicer errors, thus avoiding error propagation. Filter coefficients for the equalizer are selected so as to minimize a cost function for the equalizer, including a correction term as a function of the energy of the filter coefficients. The equalizer includes a coefficient generator responsive to the correction term. One embodiment estimates a transmitted symbol from a received sample as a function of Signal-to-Interference and Noise Ratio (SINR) of the received sample. The received sample is quantized and mapped to a region of a grid overlaid on the transmitted symbol constellation. The region may correspond to a symbol estimate value or may be processed further to obtain a symbol estimate value.
Abstract:
Methods and apparatuses to selectively assign interlace preference factors to a plurality of user terminals to use a plurality of interlaces. These methods and apparatuses may improve capacity compared to a system that allows each user terminal to transmit data in every interlace.
Abstract:
A method and system for interference cancellation (IC). One aspect relates to traffic interference cancellation. Another aspect relates to joint IC for pilot, overhead and data. Another aspect relates to improved channel estimation. Another aspect relates to adaptation of transmit subchannel gains.
Abstract:
A carrier recovery method and apparatus using multiple stages of carrier frequency recovery are disclosed. A receiver uses multiple frequency generation sources to generate carrier signals used to downconvert a received signal. An analog frequency reference having a wide frequency range and coarse frequency resolution is used in conjunction with a digital frequency reference having a narrow frequency range and fine frequency resolution. The multiple carrier signals are multiplied by a received signal to effect a multi-stage downconversion, resulting in a baseband signal. A frequency tracking module measures the residual frequency error present in the baseband signal. The measured residual frequency error is then used to adjust the frequencies of the carrier signals generated by the multiple frequency generation sources.
Abstract:
A base station for establishing a picocell is configured so as to provide multiple sectors, with spatial diversity between sectors. The combination of the multiple sectors and the spatial diversity reduces signal power requirements in the air interface within a confined space and provides improvements in quality of service.
Abstract:
In a CDMA data communication system capable of variable rate data transmission, a time-division power assignment cyclically reduces the carrier power level to at least one sector to reduce interference in neighboring sectors. The base station determines a time-division power assignment for each sector and generates signals according to the power assignment. The mobile unit (700) generates filter coefficients corresponding to each power level. The mobile unit estimates Carrier Signal-to-Interference (C/I) to determine a data rate for each power level. Previous iterations of the equalizer (710) are stored and used to refine future estimates.