Abstract:
A power battery pack and an electrical vehicle including the same are provided. The power battery pack includes: a tray; a plurality of battery modules disposed in the tray, and including a first battery module disposed on the tray and a second battery module stacked on the first battery module; a second module cooling plate disposed outside of the second battery module, and including a first bottom plate and a first side plate; and a first side heat-conducting plate disposed at an outer side of the first side plate and heat-conductively connected therewith, wherein both the first bottom plate and the first side plate have a heat pipe disposed therein respectively, the heat pipes of the first bottom plate and the first side plate are in communication with each other; and the first side heat-conducting plate has a heat pipe disposed therein and heat-conductively connected to the tray.
Abstract:
A battery cooling plate assembly includes: a lower cooling plate, an upper cooling plate, having a passage molding portion, and a coolant passage defined between the lower cooling plate and the passage molding portion of the upper cooling plate; wherein the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate via electromagnetic pulse welding. The coolant passage may be formed at the same time by electromagnetic pulse welding, which may cancel the step of stamping, thus may decrease manufacturing cost of the battery cooling plate assembly.
Abstract:
A battery spacer, an electric core protection assembly having the battery spacer and a power battery are provided. The battery space includes: a spacer body; a plurality of protrusions, each protrusion being protruded from an inner surface of the spacer body, extended in a longitudinal direction of the spacer body, and formed by recessing a portion of an outer surface of the spacer body; a plurality of grooves formed in the outer surface of the spacer body, each groove corresponding to the protrusion respectively and formed by recessing the portion of the outer surface of the spacer body; and a plurality of liquid guiding slots formed in the outer surface of the spacer body and extended from the grooves to an edge of the spacer body respectively.
Abstract:
A power battery module (1000) is provided. The power battery module (1000) includes a battery accommodating assembly (100) having a plurality of separators (10), the separator (10) comprising: a separator body (11); a left cover (12); and a right cover (13), in which adjacent separators (10) are detachably connected with each other; a battery group; and a signal collection and power connection assembly (400) mounted on the separator (10) and comprising: a substrate (401); a power connection member (407) fixed to the substrate (401); a power connection line (4071) disposed on the substrate (401) and defines a first end connected with the power connection member (407); a signal collection line (4021) disposed on the substrate (401) and defines a first end connected with the power connection member (407); and a signal collection member (402) disposed on the substrate (401) and connected with the signal collection line (4021).
Abstract:
A power battery module (1000) is provided. The power battery module (1000) includes a battery accommodating assembly (100) having a plurality of separators (10), each separator (10) comprising: a separator body (11) having a front portion defining a front accommodating groove (14) and a rear portion; a left cover (12); a right cover (13), a battery group, a power connection member (407), a power connection line (4071) and a line snap-fit (200); in which adjacent separators (10) are detachably connected with each other, and the front accommodating groove (14) of one of the adjacent separators (10) and the rear portion of the separator body (11) of the other of the adjacent separators (10) define a battery chamber, and a snapping hole (1123) is formed in at least one of upper and lower walls of the front accommodating groove (14).
Abstract:
A battery spacer is provided. The battery spacer (2) comprises a first spacing plate (22) and a second spacing plate (22 ' ) aligned with and spaced from each other in a longitudinal direction and a plurality of beams (211) parallel to and spaced from each other in a transverse direction. Each beam (211) is connected between the first and second spacing plates (22, 22 ) in the longitudinal direction and protrudes outwardly from a plane formed by back surfaces of the first and second spacing plates (22, 22 ). The beams (211) are configured to securely receive at least tabs of cell cores between neighboring beams (211). A battery protecting device and a power battery are provided as well.
Abstract:
A battery system comprising a battery pack, in the battery pack there are a plurality of cells, which are electrically connected by physical contact (1200) between electrical terminals of adjacent cells (300). A resistive heater (1205) is attached to at least some of the electrical terminals in the battery pack to thereby warm the cells to a more optimum operating temperature in response to a sensed temperature.
Abstract:
The present invention relates to lithium ion secondary batteries that have an enclosure with an electrode core compartment for holding the electrode core and a separate protection circuit compartment for holding the protection circuits, and terminal leads connecting the electrodes in the electrode core with the circuits in the protection circuit. The enclosure is made of non-conducting material such as plastic. The lithium batteries of this invention are light, not only because of the weight of the material of their enclosure, but also because its non-conducting character eliminates the necessity of additional protective features that are commonly necessary for enclosures with metal components.
Abstract:
A type of winding assembly type lithium ion secondary power battery includes: winding assembly type electrode cores wound with positive electrodes, negative electrodes and a separation membrane, electrolyte, and a battery shell. Its characteristics are: the interior of the battery shell carries at least one electrode units formed by electrode holders holding many stacked electrode cores. The terminal leads of the current collector for all positive and negative electrode cores are led from the upper and lower ends of the electrode unit respectively. The positive and negative terminals on cover boards and the outer side of the cover boards are connected to terminal leads of the current collector by built-in fasteners. There is a separation ring between the electrode core body of the battery and the cover boards of the battery. The present invention simplifies the manufacturing technology, increases the energy density of the battery, the mechanical property and safety property of the battery, and has an excellent high discharge property.
Abstract:
The present disclosure discloses an electric connector and a battery comprising the same. The electric connector includes a leading-out sheet, and a plurality of connecting sheets welded to the leading-out sheet, each connecting sheet comprising at least two welding portions; wherein the leading-out sheet and each connecting sheet are separate parts. The electric connector according to the present disclosure is convenient in welding, simple in structure, low in process cost, stable and reliable in structure and high in safety.