Abstract:
A wedge loading mechanism (1) for an eccentric planetary traction drive in which a roller having a flexibly mounted shaft (4) is positioned between two raceways (2 & 3) forming a convergent wedge. Rotation of either of the two raceways (2 & 3) wedges the roller within the convergent wedge squeezing the roller between the two raceways (2 & 3) thereby transmitting rotational motion and torque between the two raceways (2 & 3). The flexibly mounted shaft (4) generates differences between an effective supporting stiffness of the roller and an contact effective stiffness at the points where the roller contacts the two raceways (2 & 3). The difference in the effective stiffness allow the roller to operate efficiently at smaller convergent wedge angles.
Abstract:
A supercharger for boosting intake manifold pressure in an internal combustion engine and producing electrical energy comprises an input shaft (3), a electric machine (50) including a stator (51) and a rotor (53), a compressor (70) including an impeller (71), and a planetary transmission (30) located between the input shaft (3) and the rotor (53) of the electric machine (50) and the impeller (71) of the compressor (70), all such that the input shaft 3 can drive both the impeller (71) and the rotor (53), or the rotor (53) and input shaft (3) can drive the impeller (71). The planetary transmission (30) includes an outer ring (31) operatively coupled to the input shaft (3), a sun member (39) operatively coupled to the impeller (71), planetary clusters (38) located between the outer ring (31) and sun member (39), and a carrier (37) operatively coupled to the planet clusters (38) and the rotor (53). Each planetary cluster (38) comprises an inner roller (35) and an outer roller (33).
Abstract:
A friction drive (10) having a plurality of planet assemblies (24A, 24B, 24C) pivotally mounted to a carrier (12), a sun shaft (14) rotatably mounted with the carrier (12) and having a first raceway (16), and an outer ring member (18) having a second raceway (22) concentric to the first raceway (16) and having a ring shaft (20). The plurality of planet assemblies (24A, 24B, 24C) frictionally engaged with the first raceway (16) and the second raceway (22) for transferring power between the sun shaft (14) and the outer ring member (18).
Abstract:
A camshaft phase shifting device (30) includes a coaxially arranged three-shaft gear system, having an input shaft (16), an output shaft (14), and a control shaft (34) for adjusting the phase angle between the input and output shafts (16, 14). The control structure is a torque-based control structure. The dynamic response of the gear system and thus the desired phase angle of a camshaft (12) associated with the output shaft (16) is controlled and adjusted by a controller (40) which produces a torque command based on received signals. These signals include, but are not limited to, cam shaft phase angle error signal, torque load, and/or angular position signal of the camshaft (12), and relative speed signal between the input and output shafts (16, 14). The torque command is converted by an electric machine (32) into an electro-magnetic torque exerting on the control shaft (34) of the camshaft phase shifting device (30), and includes two parts, a feed forward part to compensate for the known disturbances in system torques and a feedback part to compensate for unknown disturbances.
Abstract:
A mechanical structure (16) for enabling a rotor (28) in a permanent magnet electric motor A to be moved axially relative to a stator (14) under an actuating force, without experiencing frictional sliding during such a movement. As the rotor (28) is moved away from the stator (14), the motor magnetic field is weakened, enabling the motor A to operate efficiently at elevated speeds, extending speed coverage under constant power.
Abstract:
An electric motor comprising a rotor, a stator and a field weakening device. The rotor has a plurality of magnets mounted thereto, and the stator is located adjacent to the rotor and has a plurality of slots defined therein. The slots define raised teeth and are wound with electrical wiring to generate a magnetic field when the wiring is energized with current. The field weakening device is made from a highly magnetically permeable material and a comparatively lower magnetically permeable material. The field weakening device is disposed between the rotor and the stator and is selectively movable between a first position to align the highly magnetically permeable material between the teeth of the stator and the magnets of the rotor and a second position to align the comparatively lower magnetically permeable material between the teeth of the stator and the magnets of the rotor.
Abstract:
An electromagnetic gear-clutch assembly (1) is disclosed. The device comprises a gear (10) having grooves (10c) that open inwardly toward the axis and extend axially. A hub (12) is located within the gear (10) where it is capable of rotating within the gear (10). The hub (12) has grooves (12k) that open outwardly away from the axis and extend axially. Keys (17) are located within the grooves (12k) of the hub (12) and are capable of moving radially toward and away from the axis, the arrangement being such that when the keys (17) are permitted to move away from the axis, at least one will enter one of the grooves (10c) in the gear (10) to couple the gear (10) and hub (12) so that they will rotate in unison. The device also comprises an actuator assembly (3) for effecting radial displacement of the keys (17).
Abstract:
An eccentric planetary traction drive transmission (A) which includes at least two planetary rollers (3 & 4), sun roller member (2), and a carrier member (27). One of the planetary rollers (3, 4, or 5) is flexible and is positioned between and in contact with an outer ring member (1) and the sun roller member (2). Rotation of either the outer ring member (1) or the sun roller member (2) wedges the flexible planetary roller (3, 4, or 5) within a convergent wedge gap (23) which squeezes the flexible planetary roller (3, 4, or 5) between the outer ring member (1) and the sun roll member (2). Friction between the flexible planetary roller (3, 4, or 5), the sun roller member (2), and the outer ring member (1) transmits rotational motion and torque between the outer ring member (1) and the sun roller member (2). The other at least one supporting planetary roller (3, 4, or 5) is a supporting roller which supports the sun roller member (2) and the carrier member (27). A plurality of bearings (26) supports the sun roller member (2) within the outer ring member (1) and the at least one supporting planetary roller (3, 4, or 5).