Abstract:
A liner panel is provided for use in a gas turbine engine. The liner panel includes an intermediate rail that extends from a cold side of a liner panel. The liner panel also includes a multiple of heat transfer augmentors, which generally decrease in height with respect to a distance from the intermediate rail.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a combustor shell and a combustor heat shield that is attached to the shell. The heat shield includes a first panel and a second panel that sealingly engages the first panel in an overlap joint. A cooling cavity extends between the shell and the heat shield and fluidly couples a plurality of apertures in the shell with a plurality of apertures in the heat shield.
Abstract:
A liner panel for use in a combustor of a gas turbine engine includes a nozzle includes an inner periphery along an axis. The inner periphery includes a flow guide around the axis. A wall assembly for use in a combustor of a gas turbine engine includes a support shell with a first inner periphery along an axis. The wall assembly also includes a liner panel with a second inner periphery along the axis, the second inner periphery including a spiral flow guide around the axis. A method of reducing recirculation into a dilution passage in a combustor liner panel of a gas turbine engine includes contouring a dilution passage to match a natural vena contracta of a fluid flowing therethrough.
Abstract:
A liner assembly for a combustor of a gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes a support shell with a convex profile which faces the heat shield. A further embodiment of the foregoing embodiment of the present disclosure is where the convex profile is defined by a hyperbolic cosine function. A further embodiment of any of the foregoing embodiments of the present disclosure is where the convex profile provides an approximate 4.5 inlet-to-exit area ratio. A further embodiment of any of the foregoing embodiments, of the present disclosure wherein the convex profile provides a flow acceleration toward approximately 0.5 Mach towards an end of a convergent section.
Abstract:
A heat shield for a combustor liner includes first linear film cooling slots through the heat shield and second linear film cooling slots through the heat shield. The first linear film cooling slots are run in a row and each of the first linear film cooling slots is angled from the row in a first direction. The second linear film cooling slots also run in the row and each of the second linear film cooling slots is angled from the row in a second direction opposite the first direction. The second linear film cooling slots alternate with the first linear film cooling slots in the row. The first and second linear film cooling slots are connected to form a single, multi-cornered film cooling slot.
Abstract:
An assembly is provided for a turbine engine. A combustor wall of the turbine engine assembly includes a shell and a heat shield. The combustor wall defines a quench aperture through the shell and the heat shield. The heat shield defines an effusion outlet a distance from the quench aperture equal to between about twenty-five times and about seventy-five times a width of the effusion outlet.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall. The combustor wall includes a shell, a heat shield and an annular body. The body extends laterally between an inner surface and an outer surface. The inner surface defines an igniter aperture in the combustor wall. The outer surface is vertically between the heat shield and the shell. The shell defines a first cooling aperture through which air is directed to impinge against the outer surface.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall including a shell and a heat shield. The combustor wall defines first and second cavities between the shell and the heat shield. The heat shield defines a first outlet and an elongated second outlet. The first outlet is fluidly coupled with the first cavity. The second outlet is fluidly coupled with the second cavity. The combustor wall defines one of the cavities with a tapered geometry.
Abstract:
A liner panel for a combustor of a gas turbine engine includes a multiple of heat transfer augmentors. At least one of the multiple of heat transfer augmentors includes a cone shaped pin.