Abstract:
A combustor a gas turbine engine includes an axial fuel injection system in communication with a combustion chamber, the axial fuel injection system operable to supply between about 10%-35% of a combustion airflow. A radial fuel injection system communicates with the combustion chamber downstream of the axial fuel injection system, where the radial fuel injection system is operable to supply between about 30%-60% of the combustion airflow. A multiple of dilution holes are in communication with a combustion chamber downstream of said radial fuel injection system, where the multiple of dilution holes are operable to supply between about 5%-20% of the combustion airflow.
Abstract:
A turbine engine combustor wall includes support shell and a heat shield. The support shell includes shell quench apertures, first impingement apertures, and second impingement apertures. The combustor heat shield includes shield quench apertures fluidly coupled with the shell quench apertures, first effusion apertures fluidly coupled with the first impingement apertures, and second effusion apertures fluidly coupled with the second impingement apertures. The shield quench apertures and the first effusion apertures are configured in a first axial region of the heat shield, and the second effusion apertures are configured in a second axial region of the heat shield located axially between the first axial region and a downstream end of the heat shield. A density of the first effusion apertures in the first axial region is greater than a density of the second effusion apertures in the second axial region.
Abstract:
A diffuser for a gas turbine engine includes a diffuser housing that has a circumferential array of hollow struts that provide a cavity. The diffuser housing includes inlet and outlet apertures that are in fluid communication with the cavity. An opening on a trailing end of the struts is in fluid communication with the cavity. The diffuser housing is configured to introduce a fluid through the inlet aperture and receive a core flow through the opening. The fluid and core flow exit through the outlet aperture.
Abstract:
A liner panel for a combustor of a gas turbine engine includes a multiple of heat transfer augmentors. At least one of the multiple of heat transfer augmentors includes a cone shaped pin.