Abstract:
The invention encompasses methods of forming silicide interconnects over silicon comprising substrates. In one implementation, a first layer comprising a metal and a non-metal impurity is formed over a region of a silicon comprising substrate where a silicide interconnection is desired. An elemental metal comprising second layer is formed over the first layer. The substrate is annealed to cause a reaction between at least the elemental metal of the second layer and silicon of the substrate region to form a silicide of the elemental metal of the second layer. In another considered aspect, a method of forming a silicide interconnect over a silicon comprising substrate includes providing a buffering layer to silicon diffusion between a refractory metal comprising layer and a silicon containing region of a substrate. The substrate is annealed under conditions effective to diffuse at least some of at least one of the refractory metal and the silicon through the buffering layer to form a silicide of the refractory metal, with the buffering layer during the annealing reducing silicon consumption from the region over that which would otherwise occur under the same annealing conditions were the buffering layer not present. The invention also encompasses a method of forming a stack of refractory metal nitride over refractory metal silicide over silicon includes providing a silicon comprising substrate.
Abstract:
The invention includes methods of forming conductive lines, such as local interconnects. In one implementation, a method of forming a conductive line includes depositing a first layer comprising polymer silicon on a substrate. A metal layer is deposited at least over some portion of the first layer. After depositing the metal layer, the substrate is exposed to annealing conditions effective to form a metal silicide over the at least some portion. The metal silicide is provided into a desired conductive line shape. In one implementation, a method of forming a conductive line includes depositing a first layer comprising polymer silicon or amorphous silicon on a substrate. Only a portion of the first layer is exposed to both oxygen and ultraviolet light effective to transform at least an outer part of the portion to oxidized silicon. After the exposing to both oxygen and ultraviolet light, a metal layer is deposited at least over some portion of the first layer which was not subjected to the effective exposing to the combination of oxygen and ultraviolet light. After depositing the metal layer, the substrate is exposed to annealing conditions effective to form a metal silicide over the at least some portion. After the annealing, metal is removed from the metal layer which has not been transformed to metal silicide substantially selective relative to metal which has been so transformed.
Abstract:
Electronic apparatus, systems, and methods include a resistive random access memory cell having an oxygen gradient in a variable resistive region of the resistive random access memory cell and methods of forming the resistive random access memory cell. Oxygen can be incorporated into the resistive random access memory cell by ion implantation. Additional apparatus, systems, and methods are disclosed.
Abstract:
An n-type field effect transistor includes silicon-comprising semiconductor material comprising a pair of source/drain regions having a channel region there-between. At least one of the source/drain regions is conductively doped n-type with at least one of As and P. A conductivity-neutral dopant is in the silicon-comprising semiconductor material in at least one of the channel region and the at least one source/drain region. A gate construction is operatively proximate the channel region. Methods are disclosed.
Abstract:
Photonic nanostructures, light absorbing apparatuses, and devices are provided. The photonic nanostructures include a plurality of photonic nanobars configured to collectively absorb light over an excitation wavelength range. At least two of the photonic nanobars of the plurality have lengths that are different from one another. Each photonic nanobar of the plurality has a substantially small width and a substantially small height relative to the different lengths. A method for forming such may comprise forming a plurality of first photonic nanobars comprising a width and a height that are smaller than a length of the plurality of first photonic nanobars, and forming a plurality of second photonic nanobars comprising a width and a height that are smaller than a length of the second photonic nanobar, wherein the lengths of the plurality of first photonic nanobars and the lengths of the plurality of second photonic nanobars are different from one another.
Abstract:
Some embodiments include methods of forming charge storage transistor gates and standard FET gates in which common processing is utilized for fabrication of at least some portions of the different types of gates. FET and charge storage transistor gate stacks may be formed. The gate stacks may each include a gate material, an insulative material, and a sacrificial material. The sacrificial material is removed from the FET and charge storage transistor gate stacks. The insulative material of the FET gate stacks is etched through. A conductive material is formed over the FET gate stacks and over the charge storage transistor gate stacks. The conductive material physically contacts the gate material of the FET gate stacks, and is separated from the gate material of the charge storage transistor gate stacks by the insulative material remaining in the charge storage transistor gate stacks. Some embodiments include gate structures.
Abstract:
Semiconductor devices and methods for forming semiconductor devices are provided, including semiconductor devices that comprise one or more diffusion regions in a semiconductor, the one or more diffusion regions being adjacent to a gate formed adjacent to a surface of the semiconductor (e.g., a semiconductor substrate). The one or more diffusion regions comprise a first width at a depth below the surface of the semiconductor and a second width near the surface of the semiconductor, the second width of the one or more diffusion regions being less than about 40% greater than the first width.
Abstract:
An n-type field effect transistor includes silicon-comprising semiconductor material comprising a pair of source/drain regions having a channel region there-between. At least one of the source/drain regions is conductively doped n-type with at least one of As and P. A conductivity-neutral dopant is in the silicon-comprising semiconductor material in at least one of the channel region and the at least one source/drain region. A gate construction is operatively proximate the channel region. Methods are disclosed.
Abstract:
Metal-insulator-metal capacitors with a bottom electrode including at least two portions of a metal nitride material. At least one of the portions of the metal nitride material includes a different material than another portion. Interconnects including at least two portions of a metal nitride material are also disclosed, at least one of the portions of the metal nitride material are formed from a different material than another portion of the metal nitride material. Methods for fabricating such MIM capacitors and interconnects are also disclosed, as are semiconductor devices including such MIM capacitors and interconnects.
Abstract:
Some embodiments include methods of forming one or more doped regions in a semiconductor substrate. Plasma doping may be used to form a first dopant to a first depth within the substrate. The first dopant may then be impacted with a second dopant to knock the first dopant to a second depth within the substrate. In some embodiments the first dopant is p-type (such as boron) and the second dopant is neutral type (such as germanium). In some embodiments the second dopant is heavier than the first dopant.