Abstract:
A method for depositing a substance on a substrate that involves forming a supercritical fluid solution of at least one supercritical fluid solvent and at least one solute, discharging the supercritical fluid solution through an orifice under conditions sufficient to form solid particles of the solute that are substantially free of the supercritical fluid solvent, and electrostatically depositing the solid solute particles onto the substrate. The solid solute particles may be charged to a first electric potential and then deposited onto the substrate to form a film. The solute particles may have a mean particle size of less than 1 micron.
Abstract:
A method produces patterned deposition on a substrate (14) from compressed fluid. A delivery system (12) cooperates with a controlled environment (30, 100, 200) retaining a substrate (14) for receiving precipitated functional material 44 along a fluid delivery path (13) from the delivery system (12). A mask (22) is arranged in close proximity to the substrate (14) for forming the patterned deposition on the substrate (14).
Abstract:
A method is taught for forming a layer of polymeric electroluminescent material having a controlled thickness and surface uniformity. A polymeric electroluminescent material is delivered to a vessel. A fluid to the vessel is also delivered to the vessel. The fluid and the polymeric electroluminescent material in the vessel are compressed and heated to form a thermodynamically stable or metastable mixture. The thermodynamically stable or metastable mixture is sprayed at a surface, the fluid vaporizing during spraying with the the polymeric electroluminescent material being deposited as a light emitting layer on the surface.
Abstract:
A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The Tg of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.
Abstract:
The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.
Abstract:
The present invention relates to a process for the production of a powder coating, in which a suspension of powder particles is sprayed and the spray jet is directed onto the substrate to be coated, characterized in that1.) a suspension of powder particles in a liquefied gas is employed, the gas having been liquefied under a pressure of not more than 20 bar, and2.) the liquid gas is vaporized before, during or after the spraying of the suspension.
Abstract:
Improved methods and apparatus for particle precipitation and coating using near- or supercritical fluid conditions are described. A fluid dispersion having a continuous phase dispersant and at least one precipitatable substance therein is contacted with a supercritical fluid (SCF) antisolvent so as to generate focused high frequency antisolvent sonic waves, breaking up the dispersion into extremely small droplets; the enhanced mass transfer rates between the droplets and the antisolvent causes precipitation of very small particles on the order of 0.1-10 .mu.m. In coating processes, a turbulent fluidized flow of core particles is created using an SCF antisolvent in an enclosed zone. The core particles are contacted therein at near- or supercritical conditions by a fluid dispersion containing a dispersant together with a precipitatable substance. The antisolvent depletes the dispersant and the substance is precipitated onto the fluidized core particles. In another aspect of the invention, a process for preparing and administering a medicament using only a single container is provided. In such method, a fluid dispersion having a dispersant with the medicament therein is contacted with an antisolvent at near- or supercritical conditions within a use container, so as to directly precipitate small particles of the medicament in the container. The antisolvent is then removed and the use container is sealed with the medicament particles therein. Thereafter, dose(s) of the medicament can be withdrawn from the use container and administered to a patient.
Abstract:
Methods and apparatuses are provided for forming fine particles of a desired substance comprising dissolving said substance in a fluid such as water to form a solution and mixing the solution with a second fluid such as supercritical carbon dioxide which becomes a gas upon rapid pressure release, and with which the first fluid is at least partially immiscible, and releasing the pressure to form an air-borne dispersion or aerosol comprising particles having an average diameter between about 0.1 and about 6.5 .mu.m.
Abstract:
A process for making a fluoropolymer is disclosed. The process comprises solubilizing a fluoromonomer in solvent comprising a carbon dioxide fluid, and then polymerizing the fluoromonomer to produce the fluoropolymer. A preferred solvent for carrying out the process is supercritical carbon dioxide; preferred fluoromonomers for carrying out the process are fluoroacrylate monomers such as 1,1-dihydroperfluorooctyl acrylate. The polymerization step is preferably carried out in the presence of an initiator such as azobisisobutyronitrile.
Abstract:
The present invention is directed to methods and apparatus for effectively proportioning a mixture of compressible and non-compressible fluids, wherein the resulting mixture has an almost constant density. The present invention is particularly useful for admixing supercritical fluids with polymeric coating compositions for various spray applications.