Abstract:
The present invention provides a method for the selective placement of carbon nanotubes on a particular surface. In particular, the present invention provides a method in which self-assembled monolayers formed on an unpatterned or patterned metal oxide surface are used to attract or repel carbon nanotubes from a dispersion containing the same. In accordance with the present invention, the carbon nanotubes can be attracted to the self-assembled monolayers so as to be attached to the metal oxide surface, or they can be repelled by the self-assembled monolayers bonding to a predetermined surface other than the metal oxide surface containing the self-assembled monolayers.
Abstract:
The present invention is related to a method for treating a silica-coated substrate, comprising the steps of : - providing a substrate having a silica layer on its surface, - modifying an accessible surface of said silica layer by bringing the substrate into contact with at least one silazane agent so as to obtain a covalently bound single molecular layer on said accessible surface. Monofunctional or polyfunctional silazane agents can be used in the method. The invention is equally related to a substrate comprising a silica layer provided with a single molecular silane-modified layer.
Abstract:
An elastomeric stamp (10) is provided, which has a bulk surface (12) from which protruding features (14, 14') extend. A barrier layer (20) covers the bulk surface (12) and the protruding features (14, 14'). After applying an ink solution to the elastomeric stamp (10) and drying the elastomeric stamp (10), the elastomeric stamp (10) is brought into contact with a surface (42) of a first substrate (40). The surface (42) of the first substrate (40) has a high affinity with the ink molecules (32), which is utilized to effectively remove the ink molecules (32) from the contact surfaces (16, 16') of the protruding features (14, 14'). Subsequently, the elastomeric stamp (10) is brought into contact with the surface (52) of a second substrate (50). Ink molecules 32 are transferred from the edges (18, 18') of the protruding features (14, 14') to the surface (52) of a second substrate (50), thus forming an ink pattern in the form of a selfassembled monolayer on this surface (52). The patterning method of the present invention allows for the formation of high-definition ink patterns on a substrate (50) using a wide variety of inks.
Abstract:
A method is proposed with which chemically defined bodies can be deposited on a substrate. Therefore, the bodies are fixed with a predetermined orientation on a stamping means which is then approached to the substrate whereby the bodies are deposited. While releasing the stamping means the bodies remain on the substrate keeping their orientation.
Abstract:
An apparatus (95) and method for patterning a surface of an article (30), the apparatus (95) including a large-area stamp (50) for forming a self-assembled monolayer (36) (SAM) of a molecular species (38) on the surface (34) of a layer (32) of resist material, which is formed on the surface of the article (30). The large-area stamp (50) includes a layer (52) of an elastomer and has, embedded within it, mechanical structures (68, 80) which stiffen the large-area stamp (50) and deform it to control the stamped patterns. The method includes the steps of: forming a layer (32) of resist material is on the surface of the article (30), utilizing the large-area stamp (50) to form the SAM (36) on the surface (34) of the layer (32) of resist material, etching the layer (32) of resist material, and thereafter etching or plating the surface of the article (30).
Abstract:
The present invention relates generally to molecular printing techniques for use in sensors, assays, and integrated optics and electronics. Specifically, the present invention relates to covalent patterning of graphene surfaces.
Abstract:
Thermoplastic Polyimide (TPI) polymer adhesive coated laminating film in which the TPI coating is under cured or B-staged as well as the process for preparing the film is disclosed.
Abstract:
Methods of attaching a ligand to a surface are described that include contacting a surface with a substrate containing an amphiphilic comb polymer. The substrate is configured to provide a pattern of the amphiphilic comb polymer on a selected region of the surface. The substrate can be separated from the surface leaving the amphiphilic comb polymer on the selected region of the surface, thus providing a selected region of the surface having amphiphilic comb polymer on it. A ligand can then be deposited on the surface such that the selected region of the surface having the amphiphilic comb polymer is substantially free of the ligand.
Abstract:
A simple and reproducible preparative method for the fabrication of surface-chemical gradients is described herein. Surface-chemical gradient films are prepared by using a liquid front in relative motion to the substrate (e.g. immersion by a linear-motion drive or the use of a spreading droplet) to gradually expose substrate samples to very dilute solutions of adsorbates. As demonstrated by XPS, the self-assembled monolayer gradients produced in this way display a high packing density. This method can be used in the preparation of other gradients of various chemical or biochemical functionalities in one or two dimensions. Such gradients can be used in a wide variety of applications in such diverse areas as cell motility studies, nanotribology research, and high-throughput screening.