Abstract:
An elevator system employing a micro-processor-based group controller (FIG. 2) communicating with the cars (3, 4) to assign cars to hall calls based on a Relative System Response (RSR) approach. However, rather than using unvarying bonuses and penalties, the assigned bonuses and penalties are varied using "artificial intellience" techniques based on combined historic and real time traffic predictions to predict the number of people behind a hall call, and, calculating and using the average boarding and de-boarding rates at "en route" stops, and the expected car load at the hall call floor. Prediction of the number of people waiting behind hall calls for a few minute intervals are made using traffic levels measured during the past few time intervals on that day as real time predictors, using a linear exponential smoothing model, and traffic levels measured during similar time intervals on previous similar days as historic traffic predictors, using a single exponential smoothing model. The remaining capacity in the car at the hall call floor is matched to the waiting queue using a hall call mismatch penalty. The car stop and hall stop penalties are varied based on the number of people behind the hall call and the variable dwell times at "en route" stops. The stopping of a heavily loaded car to pick up a few people is penalized using a car load penalty. These enhancements to RSR result in equitable distribution of car stops and car loads, thus improving handling capacity and reducing waiting and service times.
Abstract:
An elevator control system employing a micro-processor-based group controller (FIG. 2), which communicates with the cars (3, 4) of the system to determine the conditions of the cars, and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, assigning hall calls to cars based on the summation for each car, relative to each call, a weighted summation of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call being assigned, assigning varying "bonuses" and "penalties" to them in the weighted summation. "Artificial intelligence" techniques are used to predict traffic levels and any crowd build up at various floors to better assign one or more cars to the "crowd" predicted floors, either parking them there, if they were empty, or more appropriately assigning car(s) to the hall calls. Traffic levels at various floors are predicted by collecting passengers and car stop counts in real time and using real time and historic prediction for the traffic levels, with single exponential smoothing and/or linear exponential smoothing. Predicted passenger arrival counts are used to predict any crowd at fifteen second intervals at floors where significant traffic is predicted. Crowd prediction is then adjusted for any hall call stops made and the number of passengers picked up by the cars. The crowd dynamics are matched to car assignment, with one or more cars being sent to crowded floor(s).
Abstract:
Apparatus for generating dispatching signals for a group of elevators operating between two terminals. The dispatching signals are generated at intervals computed in accordance with an estimated number of passengers the next car to be dispatched from each terminal will carry. This estimate is based on the actual number of passengers carried by previously dispatched cars. By functioning in this manner the apparatus distributes the passengers between the cars.
Abstract:
The invention relates to a method for handling destination calls in an elevator group comprising several elevators using destination call control, which method comprises an allocation procedure for situations where the calls can't be served by all elevators of the elevator group in one round trip, in which situation "n" open calls and "m" fixed calls are present, which fixed calls are already allocated but not served, in which allocation procedure a genetic algorithm (GA) is used in which the following succession of steps is performed: a) chromosomes comprising genes are formed, in which chromosomes: - n first genes comprise a correlation of each open call and a corresponding elevator, - n second genes comprise a correlation of each open call and the corresponding number of the round trip in which the open call will be served, and - m third genes comprise a correlation of each fixed call and the corresponding number of the round trip in which the fixed call will be served, b) for each chromosome round trips are calculated for each elevator of the elevator group according to collective control, c) the round trips of all elevators calculated in step b) are evaluated according to known optimization criteria, as e.g. passenger riding time, passenger waiting time, energy consumption, minimum number of round trips etc., d) chromosomes which are evaluated in step c) as sufficient are put forward to the forming of a new generation by per se known GA methods, as e.g. cross-breeding, mutation, etc., e) the steps b) to d) are repeated for each chromosome of each new generation of chromosomes until a stop criterion is achieved, f) the calls are served in collective control according to the best chromosome of the last generation, and g) the destinations of each elevator in its travelling direction in the current round trip according to the best chromosome are shown on a at least one common display shortly before its arrival at said landing. The invention solves the elevator dispatching problem under consideration of more than the current round trip of the elevators in the elevator group.
Abstract:
An exemplary method of controlling an elevator system includes determining that a new passenger requests elevator service from a departure floor to a destination floor. Any candidate elevator cars are ranked. A number of stops for each assigned passenger for a ranked candidate elevator car is determined if the new passenger were assigned to that car. A determination is made whether any ranked candidate elevator car is a qualified car that can accept the new passenger and limit a number of stops for each passenger assigned to that car to a desired maximum number of stops. The new passenger is assigned to a qualified car that has a most favorable ranking of any qualified cars.
Abstract:
Die Erfindung betrifft ein Verfahren zur Zuteilung von Rufen einer Aufzugsanlage mit mindestens einem Aufzug und mindestens einer Kabine (1, 1') pro Aufzug. Von mindestens einem Passagier wird mindestens ein Ruf auf ein Zielstockwerk eingegeben. Eine Mehrzahl von Passagieren wird gemäss eingegebener Rufe von der Kabine (1, 1') in mindestens einer Fahrt von mindestens einem Eingabestockwerk auf mindestens ein Zielstockwerk verfahren. Für die eingegebenen Rufe der Fahrt wird mindestens eine Startzone (9, 9') mit einem oder mehreren Eingabestockwerken ermittelt. Für die eingegebenen Rufe der Fahrt wird mindestens eine Zielzone (10, 10') mit einem oder mehreren Zielstockwerken ermittelt. Falls mindestens eine Anzahl Halte in der Startzone (9, 9') und/oder in der Zielzone (10, 10') grösser Eins ist, wird diese Anzahl Halte reduziert.
Abstract:
An exemplary method of controlling an elevator system includes determining a source floor of a new call from a passenger desiring elevator service. A direction of travel from the source floor for the new call is also determined. A path of a considered elevator car is simulated as if the new call were assigned to the considered elevator car by determining at least one of (i) a relationship between a position of the considered elevator car and the source floor or (ii) a relationship between a direction of movement of the considered elevator car and the direction of travel. The new call is assigned to one of a plurality of elevator cars if the assigning will satisfy each of (i) the one of the elevator cars will not move in a direction opposite the direction of travel during a time between the passenger boarding the one of the elevator cars and arriving at a destination of the passenger and (ii) the one of the elevator cars will not move in a direction opposite a travel direction of any currently assigned passenger during a time between the currently assigned passenger boarding the one of the elevator cars and arriving at a destination of the currently assigned passenger.
Abstract:
A double-deck elevator group controller including a hall-installed car call registration device, cars of the first operation mode which are in charge of operation between even-numbered floors or between odd-numbered floors and cars of the second operation mode which serve all of the floors at which the cars can stop, are set, and in consideration of both combinations of boarding and alighting floors of registered from-hall car calls and an increment of the number of stops, the from-hall car calls are divided for assignment to the cars of the first operation mode and the cars of the second operation, whereby it is possible to meet from-hall car calls having arbitrary floors as the boarding and alighting floors and it is possible to improve the operation efficiency.