Abstract:
The present invention relates to a scanner provided with a vibratory beam on or in which is formed a phased array intended to extract according to either one of two parallel faces of the beam a light radiation that could be emitted by a light source.
Abstract:
An optical device includes an elastic support portion which includes a torsion bar which extends along a second direction perpendicular to a first direction and a nonlinearity relaxation spring which is connected between the torsion bar and a movable portion. The nonlinearity relaxation spring is configured so that a deformation amount of the nonlinearity relaxation spring around the second direction is smaller than a deformation amount of the torsion bar around the second direction and a deformation amount of the nonlinearity relaxation spring in a third direction perpendicular to the first direction and the second direction is larger than a deformation amount of the torsion bar in the third direction while the movable portion moves in the first direction. A comb electrode is disposed along an outer edge of the movable portion.
Abstract:
In methods and apparatus for increasing efficiency and optical bandwidth of a microelectromechanical system piston-mode spatial light modulator, an example apparatus includes: an electrode with spring legs; a base electrode; a mirror displacement determiner to determine a periodic signal corresponding to a displacement distance of the electrode beyond an instability point of the electrode; and a voltage source to output a periodic voltage to the base electrode in response to the periodic signal. The periodic voltage causes the spring legs to vary displacement of the electrode with respect to the base electrode according to the periodic voltage. The displacement includes distances beyond the instability point.
Abstract:
An image display apparatus includes a light source device including a light source unit; a scanning optical system including an image forming unit on which an intermediate image is formed by light from the light source unit; and a virtual image optical system configured to guide light of the intermediate image by using a reflecting mirror and a curved transmissive reflection member. The scanning optical system includes an optical scanning unit configured to scan the light from the light source unit in a main scanning direction and a sub-scanning direction of the image forming unit. The image forming unit is a transmissive member curved with a convex surface toward the reflecting mirror.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A scanning device includes a substrate, which is etched to define an array of two or more parallel rotating members and a gimbal surrounding the rotating members. First hinges connect the gimbal to the substrate and defining a first axis of rotation, about which the gimbal rotates relative to the substrate. Second hinges connect the rotating members to the support and defining respective second, mutually-parallel axes of rotation of the rotating members relative to the support, which are not parallel to the first axis.
Abstract:
A method for producing a micromechanical component, and a micromechanical component, includes providing a substrate having first and second outer surfaces, the second surface facing away from the first surface; forming a through-hole through the substrate from the first outer surface up to the second outer surface; attaching an optical functional layer, on the second outer surface, to cover the through-hole; removing a first segment of the substrate on the first surface of the substrate so that there arises a third outer surface inclined relative to the second surface, the third surface facing away from the second surface, the inclined surface enclosing the through-hole; and separating the micromechanical component by separating a first part of the substrate, having the through-hole, and a second part, attached to the first part, of the optical functional layer from a remaining part of the substrate and a remaining part of the optical functional layer.
Abstract:
A MEMS based alignment technology based on mounting an optical component on a released micromechanical lever configuration that uses multiple flexures rather than a single spring. The optical component may be a lens. The use of multiple flexures may reduce coupling between lens rotation and lens translation, and reduce effects of lever handle warping on lens position. The device can be optimized for various geometries.
Abstract:
A microelectromechanical system (MEMS) device comprising a wafer including a MEMS device in a substrate of the wafer is mounted to a fluid dispenser stage. The MEMS device has a damping structure coupled to a suspended element and one or more fluid confinement structures. The suspended element is connected to a fixed part of the substrate by one or more flexures configured to permit movement of the suspended element relative to the fixed part of the substrate. The damping structure extends into a gap between the suspended element and fixed part of the substrate. The fluid confinement structures permit movement of the damping structure within a limited portion of the gap and confine a viscoelastic fluid to the limited portion of the gap. A viscoelastic fluid is deposited onto the wafer in an area of the wafer configured to communicate the viscoelastic fluid into the limited portion of the gap.
Abstract:
A microelectromechanical system (MEMS) device includes a substrate, a suspended element and a damping structure connected to the suspended element and one or more fluid confinement structures. The suspended element is connected to a fixed part of the substrate by one or more flexures configured to permit movement of the suspended element relative to a fixed part of the substrate. The damping structure extends into a gap between the suspended element and the fixed part of the substrate. The damping structure includes one or more winglets that protrude over a recessed portion of the fixed part of the substrate. The fluid confinement structures are formed by the recessed portion of the fixed substrate and are configured to permit movement of the damping structure over the recessed portion of the substrate and confine a viscoelastic fluid to the limited portion of the gap underneath the winglets.