Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
A steel cord for a tire which increases a corrosion resistance and durability and improves the energy efficiency during curing of the tire and a radial tire using the same. This steel cord has an m+n twist structure comprising a core containing m pieces of wires and a sheath containing n pieces of wires, in which a rubber compound or an elastomer compound is filled into a space between the core and the sheath. Otherwise, the steel cord has a 1×N twist structure containing N pieces of wires, in which a rubber compound or an elastomer compound is filled into a space at a cord center surrounded by the N pieces of wires.
Abstract:
A steel cord for a tire which increases a corrosion resistance and durability and improves the energy efficiency during curing of the tire and a radial tire using the same. This steel cord has an mnulln twist structure comprising a core containing m pieces of wires and a sheath containing n pieces of wires, in which a rubber compound or an elastomer compound is filled into a space between the core and the sheath. Otherwise, the steel cord has a 1nullN twist structure containing N pieces of wires, in which a rubber compound or an elastomer compound is filled into a space at a cord center surrounded by the N pieces of wires.
Abstract:
A steel cord (10) has a diameter D and includes a core strand (12) and up to nine peripheral strands (14) surrounding the core strand. The core strand (12) has a diameter D1 and the peripheral strands (14) have a diameter D2. The ratio core strand diameter to peripheral strand diameter D1/D2 is greater than a predetermined value in order to enable rubber penetration. Each strand has a center of one or more center filaments (16, 22) and two or more layers of filaments (18, 20, 24, 26) surrounding the center. The twist angle of a radially outer layer is smaller than the twist angle of a radially inner layer of the same strand. A first free space (28) ranging from 0.0015.times.D to 0.0075.times.D is provided in at least the core strand between each pair of filaments (18) of the radially most inner layer.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
A steel cord (10) for reinforcing rubber product comprises at least one core strand (12) and outer strands (14), the outer strands (14) are helically twisted around at least one core strand (12). Each of the strands (12, 14) comprises core steel filaments (16, 20) with the number of m and outer steel filaments with the number of n. The diameter of the core steel filaments in the core strand is Dcc, the diameter of the outer steel filaments in the core strand is Doc, the diameter of the core steel filament in the outer strand is Dco, and the diameter of the outer steel filament in the outer strand is Doo. The ratio of Dcc/Doc is not less than 1.04, the ratio of Dco/Doo is not less than 1.03, and the ratio of Doc/Dco is not less than 1. The core steel filaments and outer steel filaments are polygonally preformed before being twisted into strands. The steel cord is used for reinforcing off-the-road tire.
Abstract:
A steel cord for reinforcing a rubber article which can improve the cut resistant property in the case of treading on an obtusely or sharply pointed projection without decreasing the strength in the axial direction of the cord and without increasing the tire weight, as well as a tire utilizing the same as a reinforcing material, are provided.The steel cord for reinforcing a rubber article has a multi-twisted structure formed by twisting a plurality of sheath strands (2) formed by twisting a plurality of wires around a core strand (2) formed by twisting a plurality of wires, and the core strand (1) and the sheath strands (2) are constituted of an at least 2-layer-twisted structure formed by twisting core wires and sheath wires respectively. In this case the relationship represented by the following formula 1.8≦[(S·cos2α)/{r·(φ1+φ2)}]×100≦4.2 is satisfied, wherein φ1: the diameter of an outermost wire of the strand (1), φ2: the diameter of an outermost wire of the strand (2), r: the center distance between the strand (1) and the strand (2), S: the cross section of the strand (2), and α: the twist angle of the strand (2).
Abstract:
A pneumatic tire has at least the outermost one of a plurality of rubber layers between a carcass and tread reinforced with a plurality of steel cords. Each of these steel cords is a single-strand steel cord with an elongation at break of not less than 4% and at least one of its component wires does not form a common circumcircle with the remaining wires. The curve circumscribing cross sections of the constituent wires of each steel cord is not a true circle. High resistance to nail penetration is assured by arranging the steel cords in such a manner that, for a large majority of steel cords, the direction of maximum offset span of the circumscribing curve is substantially coincidental with the width direction of thec outermost layer of rubber.
Abstract:
A pneumatic tire comprises a tread reinforcing belt made of metallic cords, each of the metallic cords is made up of six to twelve metallic filaments whose diameter is not less than 0.15 mm but less than 0.25 mm, the six to twelve metallic filaments are grouped into a plurality of bunches each including two to four filaments, the filaments of each bunch are twisted together at a first twisting pitch, the bunches are twisted together into the cord at a final twist pitch Pc of from 10 to 40 mm, the first twisting pitch is more than the final twist pitch, and the bunches each include at least one waved filament which is two-dimensionally waved at wave pitches Pw in a range of from 5 to 30 times the diameter (d) of the filament and a wave height (h) in a range of from 0.2 to 3.0 times the diameter (d).